小学数学教学设计
作为一名辛苦耕耘的教育工作者,总归要编写教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编为大家收集的小学数学教学设计,欢迎阅读与收藏。
小学数学教学设计1
一、教学目标
1.知识与技能目标:借助已有的生活经验,学生自主认识新的时间单位“秒”,知道“1分=60秒”。
2.过程与方法目标:通过动手操作等丰富的学习活动,学生体验一段时间,建立1秒及1分(60秒)的时间观念。
3.情感态度价值观目标:体验数学与生活的联系,渗透爱惜时间的教育,教育学生要珍惜分分秒秒。
二、教学重难点
借助丰富的活动,学生体验一段时间,建立正确的时间观念。体验数学与生活的联系。
三、教学准备
(教师)多媒体课件;(学生)口算卡片,每人准备一个时钟。
四、教学步骤
(一)情境导入
(播放新年联欢晚会的片段)
谈话:新年的钟声将敲响,让我们一起来倒计时。(课件出示钟面,伴随着“滴答”声,让学生共同进行倒计时)
谈话:刚才,我们进行倒计时,像这样计量很短的时间,我们常用比分更小的单位--秒。今天,我们就共同来认识这个新朋友。(板书课题)
(二)探究新知
1.认识时间单位“秒”
(1)师:你知道怎样计量用“秒”做单位的时间吗?请仔细观察你们所带的钟表,看看有什么发现。
(2)学生自主探索,共同探究。
(3)学生反馈:
①时钟有3根针,走得最快的那根是秒针。
②秒针走1小格是1秒。走1大格就是5秒。
③如果是读取电子表上的时间时,让学生可以利用以前学过的电子表的读法进一步类推。
(4)体验1秒钟
①师:1秒到底有多长呢?让我们闭上眼睛,仔细听一听。(利用时钟的“滴答声”让学生感受。)钟表发出“滴答”一声所经过的`时间就是1秒。
②学生跟着时钟的“滴答声”,做拍手练习,每一秒拍一下手,看看谁拍得最准。
③比一比,哪位学生不看时钟,每秒数一个数,看谁数得最准确。
④小结:刚才,我们听到钟声“滴答”一声就是一秒,我们拍一下手用1秒,数一个数也是用1秒。1秒的时间确实很短,但是有些现代化的工具在这短短的1秒钟里却可以做很多事情呢。(举几个具有说服力的数据说明1秒钟的价值)所以,我们可别小看了这短短的1秒钟,它的作用可大了。我们要珍惜时间,不浪费每1分、每1秒。
(5)师:(边拨秒针)秒针从数字12走到数字6,这表示经过几秒?从数字6走到8,表示经过几秒?请你轻轻告诉同桌的小朋友你是怎么知道的。
(6)你还知道秒针从哪儿走到哪儿也是10秒?
2.探索分与秒之间的关系
(1)师:如果秒针从数字12起,走一圈,又回到数字12,这时经过多长时间,分针有没有什么变化。
(2)让学生小组合作,仔细观察钟面,自主探索。
(3)学生反馈。
(4)小结:秒针走1圈,就是60秒,这时分针走1小格,也就是1分钟,所以1分=60秒。
3.练习:体验1分钟
(1)让学生看钟表,通过读秒来体验1分钟的长短。
(2)师:1分钟能做什么呢?
让学生分组画画、写字、做口算、摸脉搏体验1分钟实际的长短。
(3)让学生举例,说说1分钟可以做什么事。
(三)小结
师:通过今天的学习,你有什么收获?(认识时间单位--秒)有了秒针,计时就更准确了,时针、分针、秒针在时间王国里分工合作,准确地为人们报时。
(四)巩固练习
(1)完成“练习一”第2题。
填上合适的时间单位。
补充:
①们上一节课的时间是40。
②小明跑100米要用19。
(2)跑步比赛
师:让我们一起到紧张激烈的运动场上去看看。50米决赛刚结束,你能通过钟表的显示,说出运动员的成绩吗?从这张成绩表中,你能看出什么?
(3)活动:
师:下课铃声响了,请大家安静,迅速地将课桌上的学习用品整理到书包里,看看需要多少时间。看谁整理得又快又好。(学生整理,教师报时)
师:相信大家今后每时每刻都能这样珍惜分分秒秒,做时间的主人。
(五)作业收集有关时间的信息。
小学数学教学设计2
活动内容:秘境佤山游。
适合年级:五年级。
内容简析:
让学生学习身边的数学,学习有价值的数学是新课程的一个重要理念。本活动结合人教版教材六年制数学第九册第一单元“分数乘法”、第二单元“分数除法”及第三单元应用题的“行程问题”,将所学知识融于“秘境佤山游”之中,让学生综合运用所学知识解决旅游中常见的数学问题,体现数学的实用价值及其魅力。
设计思路:
以到临沧市沧源县的景点旅游为线索,将这些景点串联成线,形成旅游线路,让学生根据提供的信息提出问题、探究问题、解决问题、归纳方法。在此基础上进一步讨论油耗、油钱和旅游线路的选择等问题,以学生自己“提出问题——探究问题——解决问题”为主要教学模式,促使学生主动探究知识,培养学生初步的探究能力与联系生活解决实际问题的能力。
活动目的:
1.通过挖掘身边的数学素材,培养学生主动提出问题、分析探究问题的能力,巩固已学知识。
2.丰富学生的数学活动经验,引导学生和同伴交流数学思考的结果,获得积极的情感体验。
3.使学生感受数学与生活的联系,进一步产生对数学的探究兴趣。
4.在活动中培养学生热爱家乡的情感。
教学重、难点:
1.探究旅游四个景点至少要用多少油及所需油钱。
2.选择合理的旅游线路。
活动过程:
一、简要导入
1.今天见到佤山小朋友,心里很高兴!老师从电视里了解到秘境佤山不仅有神奇的文化,而且有优美动听的民歌,还知道佤山有很多富有传奇色彩的旅游景点。下面,请同学们介绍你知道的.景点。(学生介绍)
2.同学们介绍的景点令人心驰神往,老师现在最想到四个具有民族特色的景点去看一看、游一游。(屏幕出示)请同学们大声地把这四个景点的名字喊出来。(翁丁原始部落、南滚河自然保护区、崖画、司岗里溶洞)。
3.请同学们用所学的知识,帮助老师解决旅游途中遇到的问题。
二、根据信息探究问题
1.(屏幕出示)根据图中提供的信息(旅游车平均每小时行40千米),如果先到翁丁原始部落,你能提出什么数学问题?怎样列式?(学生提问题,口头列式)
2.如果再给大家提供一个信息“从翁丁原始部落到南滚河自然保护区有12千米”,你又能提出哪些问题?怎样计算?
估计学生会提出下列问题:①从县城到南滚河自然保护区共有多少千米?36+12=48(千米)。②从翁丁原始部落到南滚河自然保护区需几小时?12÷40=0.3(小时)。③从县城到南滚河自然保护区共用几小时?0.3+0.9=1.2(小时)或(12+36)÷40=1.2(小时),引导学生比较两种算法各有哪些优点。
3.同学们这么快就解决了在第一条旅游线路中遇到的问题,很好!接下来,老师还要到崖画和司岗里溶洞去游一游。请看大屏幕,根据提供的信息,你又能提出哪些问题?(学生提出问题,并列式解答)
估计学生会提出以下问题:①从县城到崖画有多少千米?0.6×40=24(千米)。②从崖画到司岗里溶洞有多少千米?0.4×40=16(千米)。③从县城到司岗里溶洞共有多少千米?24+16=40(千米)。④从县城出发到司岗里溶洞共需几小时?0.6+0.4=1(小时)或(24+16)÷40=1(小时),并让学生分别说一说这样算的理由。
小结并板书:路程=速度×时间
三、进一步探究“油耗”和“油钱”问题
1.在同学们的帮助下,老师知道了从县城到每个景点的路程和时间。下面,老师再给大家提供两个信息,看看从信息中你们了解到了什么,可以提出哪些问题。
信息:①旅游车每千米用油0.15升;②每升油价5.60元。
2.学生思考后提出问题,教师再选择其中最具有代表性的问题分小组讨论、探究。
问题(1):从县城到南滚河自然保护区需多少升油?0.15×48=7.2(升)。
问题(2):从县城到司岗里溶洞需要多少油钱?
①24×0.15×5.60+16×0.15×5.60=33.60(元);②(24+16)×0.15×5.6=33.60(元);③40×0.15×5.60=33.60
(元)。最后比较这三种解法,说说每种解法的理由。
问题(3):从县城到南滚河自然保护区,往返需多少升油?48×0. 15×2=14.4(升),并说说“往返”是什么意思。
问题(4):从县城到司岗里溶洞,加70元的油能返回到县城吗?33.60×2=67.20(元),并说说为什么要“×2”。
3.引导学生归纳并板书:油的总钱数=每升油价×每千米用油量×千米数。
4.让学生先说说“每升油价×每千米用油量”和“每千米用油量×千米数”所表示的意义,再说说每个算式所表示的意义。
四、给这次旅游提合理化建议
1.同学们帮助老师解决了旅游中遇到的这么多问题,真了不起!现在请同学们看旅游线路图,给老师的这次旅游提一些合理化建议,并说明你的理由。
2.学生提建议,教师对能省时、省钱、省油等经济实惠方面的建议予以肯定,倡导绿色旅游。
五、全课小结
同学们懂得的旅游知识还真不少,谢谢同学们给老师提了这么多的建议,这次秘境佤山游将成为我美好的回忆。(板书课题:秘境佤山游)
附板书设计:
秘境佤山游
路程=速度×时间
油的总钱数=每升油价×每千米用油量×千米数
小学数学教学设计3
一、联系实际,激趣导入
T:孩子们,你们已经是二年级的学生了,平时你们喜欢看课外书吗?(喜欢)
T:谁能说说你在课余时间都喜欢看什么类型的课外书呀?
S:故事书、科技书等。
T:看来你们都是爱读书的孩子,现在学校决定为你们购买一些课外书,快说说你们想要什么类型的书?
S:童话类、体育类……
T:你们说了这么多,我都记不住了,这可怎么办呀?
S:您可以记下来呀!
T:这个办法不错,下面我们把刚才那些同学说的一起记录下来。
二、全班交流,感受新知
1、让学生感受收集数据的过程
T:请同学们拿出老师给你准备的小卷子,用你喜欢的方法记录同学们的答案。(全班动手记录20名左右学生的情况)
T:讲明记录方法。
T:刚才我们记录了一些同学想要的书籍,下面我们来看看大家记录的结果如何,谁愿意给大家展示一下你记录的结果。(或教师巡视,找出典型的方法)
S:到展台上汇报自己的记录过程。(5人左右)
(如果没有画“正”字的方法,就向学生展示老师的方法)
T:刚才我们展示了几位同学和老师的记录过程,下面我们看看这些方法有什么相同和不同的地方。
S:都是每个人记录一次,不同的地方是他们选择了不同的图形记录。
T:大家说的真好,那么这些方法哪个更方便呢?
S:画“正”的方法,因为那种方法比较好数结果。
2、学习制作统计图,并根据统计图回答问题
T:我们已经收集了同学们的数据,下面我们把这个结果制成统计图来方便我们观察。请大家把小卷子翻过来,看着大屏幕的统计结果来制作统计图。(每一个小格代表一个人,提要求)
T:刚才我们经历了收集数据和根据结果制作统计图的`过程,看着统计图你有什么发现?
S:我发现有?人喜欢?书,我发现……
T:你们观察的真仔细,那谁能看着统计图提出一些问题呀!
S:提问,指名回答。
三、巩固练习,提高能力
1、刚才我们经历了统计的整个过程,并且体会到了统计给我们的生活带来的方便,下面我们就用刚才学过的知识来试着解决生活中的实际问题。请同学们翻开数学书P111,读题,明确要求。
2、看来统计还真能给我们的生活带来很多方便,最后我们以小组为单位,合作完成,统计组员最爱吃的一种蔬菜。提要求。
小学数学教学设计4
教学内容:
P10P11
教学目标:
1、使学生掌握一位数除两位数及几百几十数的口算除法的计算方法,并能正确的计算。
2、进一步体验除法的意义,感受数学与实际生活的联系。
教学重点:
掌握口算除法的.计算方法
教学难点:
能够迅速正确的计算
教学方法:
探索法、练习法
教学过程:
一、复习
口算练习,一位数除整十整百数。
二、新授
1、出示挂图,引导学生看图,渗透环保教育。提出问题:可以分多少组?
2、将学生列的算式及方法板书。并用全班学生一起复述,使每个学生弄白算法。
3、将答案完成在书上。
4、完成试一试第1~2题。
第1题学生独立完成
第2题先说说用什么方法作,然后由学生完成。
三、练习。
完成P111~3题
第一题,学生独立完成
做完后交流算法。
第2题:先让学生看图,明白图意,然后独立完成,集体订正。
第3题:先让学生看图,明白图意,然后根据问题选择有用的数字信息。
四、课堂小结
说说这节课学了什么?自己学得怎样?
学生听算,做完后交流。
学生看图,从图中获得数学信息。
学生独立思考列出算式,探究算法,与同伴进行交流。
独立完成。
集体订正,交流算法。
从图中获得信息,然后独立完成。
学生自己完成,个别学生给于适当辅导。
学生互评,自评。
板书设计:
小学数学教学设计5
一、教法建议
【抛砖引玉】
通过本单元的教学要使学生掌握整除、约数、倍数、质数、合数、质因数、公约数、最大公约数、公倍数、最小公倍数等概念;知道有关概念之间的联系和区别,能够有条理、有根据地进行思考;能使学生掌握能被2、5、3整除的数的特征;会分解质因数;会求最大公约数(两个数)和最小公倍数。
(一)教学整除的概念
因为整除这部分知识,学生在第八册教材中已接触过,因此在教学整除的概念时要注意抓住三点。
1.复习“整除”的意义。
例如:你能说出整除的含义吗?下面哪个算式的第一个数能被第二个数整除?
23÷7=3……2 6÷5=1.2
15÷3=5
24÷2=12
2.用定义的形式对“整除”加以概括,并用字母表示。
两个数相除,如果用字母表示,可以这样说:整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也就可以说b能整除a)。
3.突出强调除数不有是0。
(二)教学约数和倍数的概念
约数和倍数的概念是本单元最基本的概念,教学时要抓住五点。
1.通过“整除”引出“约数”和“倍数”的概念后,加以概括。
例如:15÷3=5,15能被3整除,我们就说15是3的倍数,3是15的约数。
如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数。
2.要强调倍数和约数是一对密不可分的概念。它们是互相依存的关系。
3.要掌握求一个数的“约数”和“倍数”的方法,并掌握其各自的特征。
在掌握一个数的约数和倍数求法的基础上,重点说明其特征:
一个数的约数的个数是有限的,其中最小的约数是1最大的约数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
可讨论一下为什么?
4.强调一个数既可以是另一个数的约数,又可以是其它数的倍数。
如:12既是60的约数,又是6的倍数。
5.要重点处理好0的问题。
根据约数和倍数的概念,0是任何自然数的倍数,任何自然数都是0的约数。但研究分解质因数、最大公约数、最小公倍数时,是把0除外的,所以要着重指出在后面研究的内容里不包括0,这样可以减少不必要的麻烦。
(三)教学能被2、5、3整除的数的特征主要把握以下四点
1.通过观察、引导,掌握能被2、5、3整除的数的特征。
2.能根据特征进行判断。
3.通过能被2整除的特征,引出奇数和偶数的概念。
能被2整除的数叫偶数,不能被2整除的数叫做奇数。
4.深化知识,沟通知识之间的联系。
(1)在□中填上几符合要求。
5□,能被2整除又能被3整除。
1□0,能被2、3、5同时整除。
(2)能被9整除的数,能否一定被3整除?为什么?
(四)教学质数、合数、分解质因数要抓住四点
1.通过对每个数的约数的个数及特点进行分类,引出质数、合数的概念。
一个数,如果只有1和它本身两个约数,这样的数叫做质数(也叫做素数)。
如:2、3、5、7、11都是质数。
一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
如:4、6、8、9、10、12都是合数。
2.重点说明“1”既不是质数,也不是合数。
3.能利用质数与合数的概念,判断一个数是质数还是合数。
如:下面哪些数是质数?哪些数是合数?
19、21、43、67、2、89
4.掌握质因数、分解质因数的概念和分解质因数的方法。
(1)每个合数教可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
如:60=2×2×3×5,2、2、3、5都是60的质因数。
(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(3)通常用短除法来分解质因数,这样比较简便。
把一个合数分解质因数,先用一个能整除这个合数的质数(通常从最小的开始)去除,得出的商如果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上面的方法继续除下去直到得出的商是质数为止,然后把各个除数和最后的商写成连乘的形式。
(五)教学公约数和最大公约数要抓住以下四个方面
1.公约数和最大公约数的概念
几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。
例如:1、2、4是8和12的公约数;4是8和12的最大公约数。
2.通过公约数的概念引出互质数的概念
公约数只有1的两个数,叫做互质数。
例如:5和7是互质数,7和9也是互质数。
3.求两个数最大公约数的方法
为了简便、通常写成下面的形式。
2 18 30 ……用公有的质因数2除
3 9 15 ……用公有的质因数3除
3 5 ……除到两个商是互质数为止
把所有的除数乘起来,得到18和30的最大公约数是2×3=6。
求两个数的最大公约数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。
在除的'过程中,有时也可以用两个数的公约数去除。
4.求最大公约数的两种特殊情况
(1)如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
(2)如果两个数是互质数,它们的最大公约数是1。
例如:7和21的最大公约数是7。
8和15的最大公约数是1。
对于能直接看出最大公约数的就不再用短除法来求了。
(六)教学公倍数和最小公倍数,要抓住以下四个方面
1.公倍数和最小公倍数的概念。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
例如:12、24、36、……都是4和6的公倍数,12是4和6的最小公倍数。
2.求最小公倍数的方法。
通常我们用分解质因数的方法来求几个数的最小公倍数。为了简便,通常写成下面的形式:
(1)求18和30的最小公倍数。
2 18 30 ……用公有的质因数2除
3 9 15 ……用公有的质因数3除
3 5 ……除到两个商是互质数为止
把所有的除数和商连乘起来,得到18和30的最小公倍数是2×3×3×5=90。
求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。
(2)求8、12和30的最小公倍数。
求三个数的最小公倍数,通常这样做:
2 8 12 30 ……用三个数公有的质因数2除
2 4 6 15 ……4和6还有质因数2,再用2除以这个数,把15移下来
3 2 3 15 ……3和15还有公有的质因数,再用3除这两个数,把2移下来
2 1 5 ……2、1和5每两个数都是互质数,除到这里为止
在讲求最小公倍数的方法时,重点讲明算理。
3.求两个数最小公倍数的特殊情况。
(1)如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍
数。
如:12和48的最小公倍数是48。
(2)如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
如:7和8的最小公倍数是56。
以后计算时,如果能直接看出最小公倍数是多少,可以不写出计算过程。
4.通过讨论,比较求两个数的最小公倍数与求三个数的最小公倍数的相同点和不同点;比较求最大公约数与求最小公倍数的相同点和不同点。
【指点迷津】
1.“整除”和“除尽”有什么联系和区别?
在整数除法里,a÷b=c,除得的商c如果是整数,而没有余数,我们就说,a能被b整除,或者说b能整除a。如:15÷3=5,我们说15能被3整除,或者说3能整除15。
在除法里,a÷b=c,数a、数b、以及商c不见得是整数,但没有余数,我们就说a能被b除尽,或者说b能够除尽a。例如,10÷4=2.5、1.5÷3=0.5、1.5÷0.3=5,都可以说被除数a能被除数b除尽。
从上面可以看出,整除是限定在整数除法里的,而“除尽”就不一定限于整数除法。我们还可以用集合图表示其关系:如果a能被b整除,a就一定能被b除尽;反之,a能被b除尽,a却不一定能被b整除。即整除可以说是除尽,但除尽不一定是整除,整除是除尽的一种特殊情况。
2.“约数”和“倍数”有什么关系?又有什么不同?
如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。如12÷3=4,我们就说12是3的倍数,
3是12的约数。不能说12是倍数,3是约数。由此可见,倍数和约数是相互依存的。
为了说明它们的不同点,请看下表。
个数
最小
最大
一个数的约数
有限
是1
是本身
一个数的倍数
无限
是本身
没有
3.什么叫质因数?什么叫分解质因数?
把一个合数分解成若干质数连乘积的形式,每一个质数就是这个合数的质因数。如:12=2×2×3,2、3叫12的质因数。
分解质因数就是把一个合数写成若干质数连乘积的形式。如12=2×2×3。
4.“0”是偶数吗?最小的偶数是几?
能被2整除的数叫做偶数,因为“
0”能被2整除,所以“0”是偶数。但在小学讲数的整除时,是在自然数的范围内,不包括“0”,所以我们可以不说“0”是偶数。
最小的偶数是几?先要搞清范围,在自然数范围内,最小的偶数是2,到中学里学了负数就不存在最小的偶数了。
二、学海导航
【思维基础】
1.举例说明什么叫整除?
例如:20÷5=4,20能被5整除,或5能整除20。
整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)。
2.什么是约数和倍数?它们之间有什么关系?
如果整数a能被整数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数。
举例:20÷5=4,20能被5整除,我们就说20是5的倍数,5是20的约数。
约数和倍数是互相依存的。
3.找出60的约数,4的倍数。
60的约数有:1、2、3、4、5、6、10、12、15、20、30、60。
4的倍数有:4、8、12、16、20……
从上面可以看出:一个数约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
4.说说下面的数哪些能被2整除?哪些能被3整除?哪些能被5整除?各自的特征是什么?
21、54、65、204、280、58、83、114、75、320、87、155
能被2整除的数有:54、204、280、58、114、320。
能被3整除的数有:21、54、204、114、75、87。
能被5整除的数有:65、280、75、320、155。
由此可知:
个位上是0、2、4、6、8的数,都能被2整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除。
个位上是0或者5的数,都能被5整除。
5.说出什么叫质数、什么叫合数并判断下面各数哪些是质数、哪些是合数。
3、27、41、6、11、19、69、57、97
一个数,如果只有1和它本身两个约数,这样的数叫做质数(也叫做素数)。
小学数学教学设计6
【教学内容】
找规律。
【教学目标】
1。使学生通过画图,由简到繁,发现规律,总结规律,进一步巩固、发展学生找规律的能力,体会找规律对解决问题的
重要性。
2。体会一些数学思想、方法在解决问题中的作用,掌握一些数学思想和数学方法,会用一些数学思想方法解决生活中的
问题。
3。进一步体验充满着探索与创造的数学活动,激发学生学习数学、探索规律的兴趣。
【重点难点】
学生通过画图,由简到繁,发现规律,总结规律。
【教学准备】
多媒体课件,投影仪。
【复习导入】
1。课件出示一组题,比一比,谁最能干。
(1)根据数的变化规律填数。
13、11、9、()、()、()。
(2)根据下面图形的排列规律,接着画出4个。
○□□○○□□○○○□□○○○○
(3)2、4、8、16、()、()(课件说明:先出现16、()、(),让学生找不到或者不容易找到
答案。体会必须要找到规律。再出现2、4、8、16,再次让学生体会要从给出的'条件出发找到规律)。
2。揭示课题:
教师:这就是我们的一种数学思考方法,难的问题解决不了或不容易解决,我们就从简单问题入手。通过比较、分析,
找到规律,然后再解决问题。下面我们就利用这一策略来解决问题。
【探索规律】
1。游戏引入:表扬刚才发言比较好的同学,与他们握手,然后让学生思考,刚才老师和学生一共握了几次?再选一位同
学与其余同学握手,再问一共握了几次,依次……让学生体会到有规律但不容易一下子说出答案,那么全班呢?(临时
收集人数)
这需要我们从人数最少的时候开始找规律,如果我们把每个人看成一个点,握手看成连线。那么我们就可以将握手问题
看成是连线问题。
2。教学例1。
6个点可以连成多少条线段?8个点呢?
(1)独立思考,发现规律。
①给时间让学生动手操作,老师边巡视,观察学生在做什么,怎么操作的,边询问学生是怎么想的。
(预设:有的同学会很快找到规律并得到结果;有的同学能找到答案,但说不清楚规律;有的同学不能找到规律,或不
能很快找到,但是可以一直画到6个点甚至8个点;还有可能能连但有遗漏;学生可能很容易发现,用一个点先和其他所
有点连接的方法,而其他的方法不一定能想到。)
②针对学生的情况,抽一两个人说说自己的发现。其他同学听,培养学生的倾听习惯。
小学数学教学设计7
教学内容:
义务教育新课程标准实验教科书数学第五册第70~71页。
教学目标:
1.学生掌握乘法估算的方法,会进行乘法估算。
2.在解决现实问题的过程中,培养学生估算的意识和习惯;培养学生归纳概括、迁移类推以及应用所学知识灵活解决实际问题的能力。
3.在估算的过程中,探索解决问题的策略,并能运用数学语言进行表述和交流;感受数学与生活的紧密联系,激发学生热爱数学、学好数学的情感。
教学过程:
一、猜数引入
老师想了一个数,它是个两位数,你们猜它是几?(随着学生的猜测,教师用“大了”和“小了”提示)
回忆刚才我们猜数的时候,是不是一下子就猜出来了呢?像刚才这种在老师提示下进行有根据的猜测,叫估计。其实,在我们的生活和学习中有很多地方要用到估计。
[说明:课前的猜数游戏,学生兴趣盎然,为新课的引入做好了铺垫。]
二、感受估计的需要
1.今天的课堂上,除了老师和你们外,还来了你们的一些老朋友呢!(课件呈现8只机器猫)来了多少只机器猫?(当数量少的时候,我们一眼就可以看出来了)
快数一数,这里有多少?(课件呈现满屏幕的机器猫,造成学生数不清的困难)
2.这么多,一下子数不清,我们可以估一估呀!(学生第一次估的差距比较大,有1000、100、500、200等)
师:怎样估计能精确些?
生1:圈出一份估一估,然后再看有这样的几份。
生2:给这些机器猫排排队。
……
3.课件给机器猫排队,排成8行。(按先估每行大约有几只,然后乘8的方法估一估)
4.师:机器猫每行有29只,排成8行,大约有多少只?该怎么列式?
[说明:创设数机器猫只数的情境,分成以下几个层次进行教学:1.直接呈现数量较少的机器猫,学生一眼就可以观察得出;2.呈现很多机器猫,造成数不清的困难,引导学生感受估计的需要;3.由于眼花缭乱,第一次估计不精确;4.通过交流估计的方法,达到比较精确的估算。这样四个层次的教学,让学生主动感受和体验到了估算的必要性与作用。]
三、交流估算的方法
1.29×8大约等于多少?把你的想法,在练习本上表示出来。
2.交流展示学生的估算方法。
A.29×8≈240,把29看成30。
(师介绍约等号的含义、写法和读法,并与等号进行比较)
B.29×8≈160,把29看成20。
C.29×8≈290,把8看成10。
D.29×8≈300,把29看成30,把8看成10。
……
[说明:给学生创设一个良好的心理环境,让他们的思考和情感得到完全的放松与充分的尊重,这样他们的想法和意见才得以尽情地流露与表述,不同的看法和结论才可以在一步步的表达中得到完善。学生在此出现了几种不同的方法,虽然有的方法还不恰当,但每个学生的思维和情感得到了发展,并在与他人方法的比较中感受到了不同估算方法的优越性和局限性。]
3.这几种方法有什么相同的地方吗?
4.同样是把因数看成整十数,但估出来的结果差距很大,这是什么原因啊?
5.通过交流明确:应该把因数看成和它最接近的整十数再估算。(去掉29×8≈160)
6.剩下的三个结果,哪个与准确值最接近?(课件演示每种估算方法)
(A是多估了1个8,C是多估了2个29,D是多估了2个29和1个8;这里不需要向学生直接说明,只要让学生感受即可)
小结:这几种方法都可以,同学们可以根据需要选择最合适的方法进行估算。
7.全班42人,如果送给每人5只机器猫,估一估,这些机器猫够送吗?42×5≈200(只)
和前面一题进行比较:29×8≈240(估大),42×5≈200(估小)。
8.试一试。
21×6≈ 48×5≈ 397×3≈ 510×7≈
9.小结:我们在估算的时候,都是把这些乘法算式中的某个数看成整十、整百、整千的数,那是不是可以看成任意的整十、整百、整千的数呢?(要看成接近的整十、整百、整千的.数)
四、拓展提升
其实,在我们的生活中,有很多地方都和估算有很大的 联系。陆老师今年暑假的北京之游就碰到了很多和估算有关的知识,让我们以数学的眼光去看看吧!
第一站:长城
长城离陆老师所住的宾馆有点远,汽车每小时行驶53千米,3小时才到达,长城离宾馆大约有()千米。
第二站:美丽的北海公园
告示:每条大游船限乘120人。
正好有4个旅游团,每个团有31人,估算一下,他们能同时上一条船吗?
[说明:此题引发了学生的争论:约等于120,却为什么不能上船?出现认知上的矛盾,学生通过争论后,明白把31看成30是估小了,所以结果也比准确值小了。在这个过程中,学生懂得了估算和精确计算之间是有误差的,在运用估算结果来解决实际问题时,还必须考虑现实情况。]
比较:31×4○120(让学生明白估算的另一个用途)
第三站:天坛公园
每张门票8元,陆老师所在的旅游团共有39人,320元钱够买门票吗?
为什么同样是估算,刚才不能上船,而现在买门票却又够了呢?
学生通过辨析比较发现,刚才是估小了,而现在是估大了,所以够了。
比较:39×8○320
第四站:购买北京特产
每种特产,老师准备都买8份,请你们帮助我算一算,大约要花多少元钱?
反馈:1.(58+11+33)×82.58×8+11×8+33×8
≈(60+10+30)×8 ≈60×8+10×8+30×8
=800(元) =800(元)
比较两种方法,哪种简单?想一想,老师大约带多少钱就够了?(让学生明白估算还可以为我们的生活提供帮助)
说明:
《数学课程标准》指出,“估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值”。而学生估算习惯的培养与能力的提高,很大程度上取决于教师的估算意识。在平时的教学中,我充分挖掘估算题材,重视进行估算示范,使学生认识到估算的必要性和优越性,并关注估算在培养学生逻辑思辨、辩证看待问题能力上的作用。
1.大胆改变教材内容,使学生产生估算的需要,体验估算的现实性。
乘法的估算,学生以前并没有接触过。在这节课上,我根据学生的实际情况,把教材的内容做了一些调整,将学生已有的经验和所学习的新内容自然地融合到一起,并通过现实问题,让学生明白估算的必要性。与此同时,课中所设计的一系列练习,都是学生在实际生活中会碰到的现实问题,并具备用估算解决的现实需要,因而整节课都能让学生感受到浓厚的生活味。
2.深入挖掘教材内涵,让学生体验数学课堂的思辨性。
成功的数学课,既能将复杂的问题简单化,也能将简单的问题深化。“乘法估算”一课,教师们都会想到要让学生体验估算的“必要性”,设计的学习素材要富含现实气息,但仅仅停留在这个层面上是不够的。如果深入研究教材我们就可以发现,在现实运用估算的过程中,分为两种情形:一是根据估的结果就可以解决相关问题;二是因为估的结果有时估大有时估小,单凭估出来的数据并不能直接准确地回答所要解决的问题,即还需结合现实情况进行考量。我在教学中充分考虑了这些情况,精心设计情境,让学生在情境中体验到“估大”、“估小”的情况及如何运用这样的结果解决问题,同时穿插比大小的训练,从而将现实性、思辨性较好地统一起来。
小学数学教学设计8
教学过程:
刚才老师教大家折纸的时候,用到了一个词,谁知道?
生1:1分钟。
师:这节课我们就来感受1分钟,1分钟有多少,能干什么。
课件出示钟表:
师:谁知道有关1分钟的哪些知识?
生1:16秒
生2:60秒
师:谁能告诉我哪个是分针?
师:分针走1格是1分种,那分针走1格,秒针走多远呢?
生3:60格。
师:那1分钟到底有多长啊?感受下。(课件演示)
谈感受:
生1:我觉得有点长。
生2:我也觉得很长。
生3:我觉得很短。
生4:很快。
师:有的觉得长,有的觉得短,……
测一测1分钟内自己的脉搏。
汇报:
生1:60(板书)
生2:97(板书)
生3:88(板书)
生4:12
师:老师帮你测一测。只测10秒就能推出。78下。(学生:啊?)
生5:96下。(板书)
生6:70下。(板书)
师:根据这些数字,你能估计其他同学的.心跳大约在多少下吗?
生1:90
生2:60
生3:80
小结:每个的…………不一样,所以心跳也不一样。
师:老师带来了一组活动,活动内容:
计算 拍球 数小棒 读字 画画
要求:每小组选择一项内容进行活动。并记录下相应的次数。
汇报:
生1:我拍了122
生2:我拍了50个
生3:我小棒数了50个
生4:我小棒数了30个。
生5:我1分钟读66个字
将活动记录下来:(课件出示表格,当场填入数字)
拍球
活动内容
组员代号
结果
从上表中你发现了什么?
……
师:我能看出,1号1分钟拍90个,我能推算出2分钟拍几个。
提问:4号2分钟大约能拍几个?
做实验:1分钟你能写多少个字?
先估计:
生1:50个
生2:30个
生3:90个。
验证到底写几个(课件出示要写的字)
学生开始写。
汇报:
生1:我猜想的是10个字,我写的就是10个字。
生2:我猜的是30个字,只写了13个字。
师:刚才猜90个字的同学呢?
生3:我也只写了十几个字。
通过刚才的体验,你有什么感想?
生1:只会说是没有用的,得做出来。
师:你能猜测2分钟写多少个字吗?
师:一节课很快就过去了,你有什么收获吗?
小学数学教学设计9
数学教学应当有意识、有计划地设计教学活动,引导学生体会数学与现实社会的联系,加强学生的数学应用意识,不断丰富解决问题的策略,提高解决问题的能力。结合有关的教学内容,培养学生如何进行初步的分析、综合、比较、抽象、概括,对简单的问题进行判断、推理、逐步学会有条理、有根据地思考问题,同时注意培养思维的敏捷性和灵活性。在这几年的时间里我得到了一些教训,认识到自己有很多不足,并且对小学教学工作有了一些体会。
一、设计生活实际、引导学生积极探究
这种教学设计有利于激发学生学习兴趣,使学生对新的知识产生强烈的学习欲望,充分发挥学生的能动性的作用,从而挖掘学生的思维能力,培养学生探究问题的习惯和探索问题的能力。
1、在教学中既要根据自己的实际,进行合理的教学设计。注重开发学生的思维能力又把数学与生活实际联在一起,使学生感受到生活中处处有数学。使教学设计具有形象性,给学生极大的吸引,抓住了学生认识的特点,形成开放式的教学模式,达到预先教学的效果。
2、给学生充分的思维空间,做到传授知识与培养能力相结合,重视学生非智力因素的培养;合理创设教学情境激发学生的学习动机,注重激发学生学习的积极性推动学生活动意识。
3、利用合理地提问与讨论发挥课堂的群体作用,锻炼学生语言表达能力。达成独立、主动地学习、积极配合教师共同达成目标。
二、积极提问,贯穿课堂始终
要想学生40分钟内都会专心听你的课那是不可能的,他们或多或少会开小差,他们有的可能连书本都不拿出来或不翻开,甚至还会说话打闹。另外,提问要有均匀性,不能反复提问某个学生,这样会使其他学生回答问题的热情消退的。
三、设计质疑教学,激发学生学习欲望
1、充分挖掘教材,利用学生已有的知识经验作为铺垫。
2、重视传授知识与培养能力相结合,培养学生自主学习的习惯。
3、在教学中提出质疑,让学生通过检验,发展和培养学生思维能力,使学生积极主动寻找问题,主动获取新的知识。
4、教学中应创设符合学生逻辑思维方式的问题情境,遵循创造学习的.规律使学生运用已有的知识经验进行分析、比较、综合。
总之,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教学过程是师生交往、互动,共同发展的过展。教师要转变思想,更新教育观念,由居高临下的权威转向与学生平等对话,把学习的主动权交给学生,鼓励学生积极参与教学活动。教师要走出演讲者的角色,成为学生学习的组织者、激励者、引导者、协调者和合作者。教师在学生的学习讨论交流过程中,只给予学生恰当的引导与帮助。要让学生通过亲身经历、体验数学知识的形成和应用过程来获取知识,发展能力。
小学数学教学设计10
一、教学内容分析
长方形的面积计算是学生认识了长方形特征、知道了面积单位、学会用面积单位直接量面积的基础上教学的,是学生第一次学习平面图形的面积计算。学会长方形、正方形面积的计算,不仅是今后学习其它图形面积的重要基础,而且有助于发展学生的思维,培养学生的学习能力和空间观念。
二、学生情况分析
四年级在属小学中年级学段,学生开始对“有用”的数学更感兴趣,本课学习内容安排与呈现都能吸引学生学习的兴趣。人的智力是多元的,学生在发展上也是存在差异的,有的学生善于形象思维,有的善于逻辑推理,有的善于动手操作,分组活动、分工合作的学习方式更有利于调动学生学习的积极性,更容易使不同的学生在学习上获得成功的体验。学生总爱把自己当成探索者、研究者、发现者,所以本课以实验探究的形式使学生感受到学习具有一定的挑战性,符合四年级学生的心理特点。
三、教学目标
1、知识与技能:使学生理解长方形面积与长和宽之间的密切关系,理解面积公式的由来,掌握面积的计算方法。通过公式的推导,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。
2、过程与方法:在分组实验这一探究发现的过程中,学生通过自己动手和动脑,获得了认识。并经过启发、讨论和独立思考、学生主动参与、积极探究,获得了长方形面积计算的方法,学生认识水平、实践能力和创新意识从中得到了培养。
3、情感、态度与价值观:让学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。学会与人合作,并能与他人交流思维的过程和结果。
四、教学重难点:
教学重点:探究并掌握长方形的面积公式
教学难点:在操作中探究长方形的面积公式
五、课前准备:长6厘米、宽3厘米的长方形纸板,1平方厘米的小正方形若干,实验记录表,实物投影。
六、教学过程:
(一)、创设情景,导入新课
师:同学们,上节课我们学习了有关面积的知识,常用的面积单位有哪些?
生:常用的面积单位有:平方厘米、平方分米、平方米
师:学习面积单位有什么用?
生:测量面积
出示长方形纸板
师:要测量它的面积,你认为用哪个面积单位比较合适?如何测量它的面积呢?
学生选择合适的面积单位,测量长方形的面积。
师:用面积单位直接去量,可以看到这个长方形的面积,但是在实际生活中,如测量操场的面积,教室的面积;草地的面积;等等,也用面积单位一个一个去量,那可就麻烦了,所以我们要寻找一种更好、更简便的方法来计算面积。
这节课,我们就来研究长方形面积的计算。
(设计意图:复习旧知的目的,唤起学生已有的知识经验,把握好教学的起点,抓住生活中的几个场景,引起学生学习新知的欲望)
(二)、自主探究
师:请同学们大胆的猜测,长方形的面积和什么有关系?
(学情预设:根据学生对长方形的认识和理解,可能会出现这几种情况:和长有关、和宽有关,和长、宽都有关,和周长有关)
(设计意图:鼓励学生大胆地猜想,唤起学生主动参与学习探究知识的欲望,也培养了学生大胆探究,敢于猜想的.精神)
(三)、实践探究,合作交流
师:你们的猜测是否正确呢?现在就请同学们带上老师温馨的提示踏上探究之旅。
出示导学提示:
1、 以小组为单位,合作搭建3个长方形,完成实验记录表。
2、 仔细观察记录表,你发现了什么?
3、 尝试用比较规范的数学语言表达实验过程及实验结论。
(学情预设:学生在组长的组织下,合理分工,有序地开展实验)
(设计意图:创设条件让学生动手操作,自主探究活动中亲身经历知识的形成过程,借助导学提示经过启发,独立思考,讨论,学生主动参与,积极探究,丛冢提高认知水平,实践能力和创新意识)
(四)、展示成果,全班交流
各小组派代表到台前展示实验记录,并发言
(学情预设:各小组介绍搭建的3个长方形的长、宽、面积各是多少,通过三次实验,发现长方形的面积等于长乘宽,对表达流畅,思路清晰的小组给予表扬)
如:我们组共搭建了3个长方形,第一个长方形的长是3厘米,宽为2厘米,面积是6平方厘米;第二个长方形的长是4厘米,宽是3厘米,面积是12平方厘米;第三个……通过三次实验,我们发现长方形的面积等于长乘宽。
(五)、解决问题
1、实践活动
在我们这间教室里,有很多物体的表面是长方形的,请大家任选一个,先估计它的面积是多少,在量出它的长和宽,计算出它的面积,考考你的眼力,看看估计的和算出的面积是不是较接近。(学生操作活动,并利用长方形面积公式正确计算出它们的面积)
2、前几天,老师新换了一个办公桌,它的长是14分米,宽是8分米,我想给这张办公桌配一块玻璃,需要买多大的玻璃板呢?
3、思考题:
这是一块打碎的玻璃,你能求出它原来的面积是多少吗?说说你的想法。
(设计意图:让学生在解决实际问题中巩固新知,使学生感受到数学与生活的联系以及数学的价值,既丰富了叙述的生活经验,同时又提高另外学生解决实际问题的能力。)
(六)、拓展延伸
在我们的生活中有很多物体的表面并不是长方形的,如正方形的面积怎样求呢?它的面积计算公式是怎样的呢?再如三角形,我们怎样可以知道它的面积呢?如果大家有兴趣的话,可以在课后研究)
(设计意图:鼓励学生大胆探究,培养探究意识和实际操作能力)
七、教学反思
1、方法比知识更重要
小学数学新课程标准在数学新教学价值观中要求:"方法比知识更重要",本节课教师改变了传统的“传递——接受”式模式,尝试采用"自主探究式"教学模式,贯穿“实验-发现-验证”思路,整节课教学过程注重了学习方法,思维方法,探索方法的获取,让学生主动获取知识,同时也让学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,这也就是贯彻新课程标准的充分体现。“实验--发现--验证”的学习方法的指导对学生今后的发展来说非常重要。
2、学会与人分工合作
本节课通过小组合作,运用不同的实验材料和方法,共同探究长方形和正方形面积计算的方法,开放了获取新知的整个教学过程。小组合作学习是指根据学生能力、性格等因素将学生异质分组,以学生学习小组为教学组织手段,通过指导小组成员开展合作学习,发挥群体的积极功能,提高个体学习的动力和能力,并达成团体目标。由于小组成员各有其职,且职责分明,因此学生都主动投入;学生的全面互动,也可以弥补教师一个人不能面向每个学生进行教学的不足。小组合作学习又是以个体学习为基础的,让不同个性、不同学力的学生都能自主地、自发地参加学习和交流,真正提高了每个学生的学习效率,真正实现“不同的人在数学上得到不同的发展”。
3、知识运用于实际生活
通过自主探究,获得长方形面积的计算公式后,教者设计了一些应用性练习,如计算学校操场的面积等,引导学生将获得的知识运用于实际生活,通过实际问题的解决,学生将书本知识转化为能力。?这个实际生活问题得以解决,既丰富了学生的生活经验,同时又提高了学生解决实际问题的能力。
4、培养实践能力和创新意识
在探究、发现的过程中,学生通过自己动手和动脑,获得了感性认识。并经过启发、讨论和独立思考,学生主动参与、积极探究,获得了长方形面积计算的方法,学生认识水平、实践能力和创新意识得到了培养。
小学数学教学设计11
教学内容
《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。
设计思路
这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。
教学目标
1、使学生理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
4、培养学生抽象、概括的能力。
重点难点
1、理解公因数和最大公因数的意义。
2、掌握求两个数的最大公因数的方法。
教具准备
多媒体课件、卡片
教学过程
一、导入
1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?
2、分别写出16和12的所有因数。
二、教学实施
1、老师用多媒体课件演示集合图。
指出 :1,2,4是16 和12公有的因数,叫做他们的公因数。
其中,4是最大的公因数,叫做他们的最大公因数。
2、完成教材第80页的“做一做”
先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。
3、出示例2。怎样求18和27的最大公因数?
(1) 学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。
(2) 小组讨论,互相启发,再在全班交流。
(3) 老师用多媒体课件和板书演示方法
方法一 :先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。
方法二 :先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。
18的因数有:① ,2 ,③ ,6 ,⑨ ,18
方法三 :先找出27的因数,再看27的.因数中有哪些是18的因数,从中找最大。
27的因数有:①,③,⑨,27
方法四 :先写出18的因数1 ,2 ,3 ,6 ,9 ,18。然后从大到小依次看是不是27的因数 ,第一个数9是27的因数,所以9是18和27的最大公因数。
4、完成教材第81页的“做一做”。
学生先独立完成,独立观察,每组数有什么特点,再进行交流。
小结:求两个数最大公因数有哪些特殊情况?
⑴ 当两个数成倍数关系时,较小的数就是他们的最大公因数。
⑵ 当两个数只有公因数1时,他们的最大公因数是1.。
三、课堂练习设计(多媒体课件出示)
选出正确答案的编号填在括号里
1、9和16的最大公因数是( )
A . 1 B. 3 C . 4 D. 9
2、16和48的最大公因数是()
A . 4 B. 6 C . 8 D. 16
3、甲数是乙数的倍数,甲乙两数的最大公因数是( )
A .1 B. 甲数C . 乙数D. 甲、乙两数的积
四、课堂小结
通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。
五、留下疑问
有三根小棒,分别长10㎝,16㎝,48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?
六、课堂作业设计
教材82页第2题、第5题
板书设计
最大公因数
例2:怎样求18和27的最大公因数?
18的因数有:1 ,2 ,3 ,6 ,9 ,18
27的因数有:1 ,3 , 9 ,27
18和27的公因数有:1 ,3 , 9
18和27的最大公因数是9
小学数学教学设计12
在数学教学中培养学生的应用意识,要从密切“数学”与“生活”的联系入手。教师通过改进课堂教学设计,架设学生“知识世界”与“生活世界”之间的桥梁,来重建学生的生活世界。只有当数学不再板起面孔,而是与学生生活实际更贴近的时候,学生才会产生学习的兴趣,才会进入数学学习的角色,才能学懂数学,真正感受和体验到数学的魅力与价值,增进的数学的理解和应用数学的信心。
一、数学问题“生活化”——让数学走进生活
数学问题“生活化”,就是让数学教学内容向学生的生活实际延伸,让生活中的数学问题进入数学教学,让数学教学充满时代的气息和活力。
1.创设贴近学生生活实际的情境
小学数学中大部分学习内容都可以在生活中找到原型。基于儿童的心理发展特点,他们的学习带有浓厚的情绪色彩,对熟悉的生活情境,感到亲切、有兴趣,我们在教学中应尽可能从学生的生活中提取数学学习的素材,使他们感受到课堂上学习的数学知识来自于生活,感知数学学习的价值,激发他们学习数学的兴趣。
2.充分利用学生已有的经验学习数学
儿童在以往的学习和生活中积累了一些经验,这些看似零散、无序、混沌、停留于表象的经验,往往是他们学习数学和解决问题的重要资源。
二、生活问题“数学化”——让生活走进课堂
1.眼中有数学
在数学教学中,教师要善于引导学生用数学的眼光观察现实世界,只有从数学的角度观察周围事物,找出其中与数学有关的因素,提出用数学解决的问题,才能体会到学习数学的重要性,增强学好数学的信心。
2.学会用数学,让学生有机会解决具有现实意义的数学问题三、积淀生活回归数学——让数学教学更具“后劲儿”
(1)学会解决问题的策略。
①画图的策略:由于小学生认识水平的局限,他们对符号、运算性质的推理可能会发生一些困难,如果适时的让他们自己在纸上涂一涂、画一画,可以拓展学生解决问题的思路,帮助他们找到解决问题的关键。因此我们认为,画图应该是孩子们掌握的一种基本的解决问题的策略。为什么说画图很重要呢?主要是比较直观,通过画图能够把一些抽象的数学问题具体化,把一些复杂的'问题简单化。常用的画图的方法有:直观图、示意图、线段图、树图、集合图等。
②推理的策略:推理是认识和使用数学的基础,而逻辑推理是一种重要的问题解决的能力。学生在猜测、检验和修正时要使用逻辑推理来调整自己的猜测;使用图表时,要用逻辑推理来分析图表。在大多数情况下,很难把逻辑推理和其他策略分开,过去我们所说的“分析法”和“综合法”都可以看作是简单的逻辑推理。然而,有一些问题却是以逻辑推理为主要的解决策略。不管是主要的策略还是与其他问题解决策略结合起来运用,逻辑推理对学生成功地解决问题都是非常重要的。
③列表的策略:在解决问题的过程当中,我们将问题的条件信息用表格的形式把它列举出来,往往能对表征问题和寻求问题解决的方法,起到事半功倍的效果。
④尝试调整的策略:尝试的策略,简单的说就是你不知道该从哪开始的时候,可以先猜一猜,来进行尝试。猜测的结果,应该是比较合理的,但是并不符合要求,还需要把猜测的结果,放到问题中去考虑,进一步调整寻找答案。
⑤模拟操作的策略:模拟操作是通过探索性的动手操作活动,来模拟问题情境,从而获得问题解决的一种策略。学生是通过自己探索的过程,将需要解决的问题,转化为一个已知的问题来进行推导性的研究。通过这种开发性的操作的策略的训练,不仅能够使学生获得问题的解决,而且在这个过程当中,也能培养学生的创造性思维。
(2)学会数学的思维方法。
智慧不能像知识那样直接传授,它需要在获取知识、积累经验的过程中由教师以自身的智慧不断唤醒、点化、丰富、开启。有效地创设和利用课程资源,引导学生在观察、实验、猜测、验证、推理与交流的数学活动中,真正经历“数学化”的过程,获得必需的数学思想和方法。
小学数学教学设计13
教学内容:北师大版小学数学四年级上册第七单元p87—90.
教学目标:
1、引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2、使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3、培养学生良好的数学情感和数学态度。
重点:负数的意义。
难点:理解0既不是正数,也不是负数。
教具准备:多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《截然相反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄式度(零下10摄式度)。
3、谈话:王老师的一位朋友喜欢旅游, 五月上旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、探究新知
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
(1)现在你能看出南京是多少摄式度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。
(2)上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄式度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄式度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?
(4)比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的`最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰朗玛峰、吐鲁番盆地的海拔表达方法
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰朗玛峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:(结合图)我们从温度计上观察,以0℃为界线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识负数)
五、联系生活,巩固应用
1.练习一第2、3题
2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。
小学数学教学设计14
教学内容:左右
教学目标:
1、通过有趣的具体活动激发学生的学习兴趣,使学生在活动中领会左右的意义。
2、使学生建立有关上下、前后、左右的的初步空间念。
教学重点:
能确定物体上下,左右的.位置与顺序,并能用自己的语言表达。
教学准备:铅笔、橡皮、尺子、文具盒、转笔刀5样学具。
教学方法:情境活动参与。
教学过程:
一、体验自身的左与右
1、大家说说,我们常常用右手做哪些事?
2、我们常常用左手做哪些事?
3、左、右手是一对好朋友,配合起来力量可大了。你身边还有这样的一对好朋友吗?要求摸着说。
4、我们来做一个游戏,听口令做动作。
要求:左手摸左耳,右手摸右耳;左手摸右耳,右手摸左耳。
学生做,老师评。
二、理解左边与右边。
出示摆一摆教学图。
1、请大家也来摆一摆。
2、摆在最左边的是什么?
3、摆在最右边的是什么?
4、尺子的左边有什么?右边呢?
5、有不同的意见呢?
演示练习:
6、请你们打乱学具摆一摆,说一说。
三、体验相对,并加深理解
1、我有一个问题想问问大家,我跟大家面对面地站着(举起右手)问:老师举起的是右手吗?
2、请你们把右手举起来再判定一下老师举起来的是不是右手。
3、与学生同向,证实结论:
我们面对面地站着,因为方向相对,举的右手就会刚好相反。
4、做游戏:我们一块儿举左手,看谁举得快又对。
四、巩固练习。
1、练一练各题。 2、分析、评议。
小学数学教学设计15
教学内容:
练习三第10~16题、思考题、动手做。
教学目标:
1、使学生在具体的解决问题情境中,进一步体会底面积、侧面积、表面积和容积这些概念的联系和区别,积累解决问题的方法和经验。
2、提高学生应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。
3、使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。
教学重点:
运用圆柱体积公式解决实际问题。
教学难点:
根据实际情况运用圆柱体积公式解决实际问题。
教学过程:
一、复习回顾,理清思路。
1、回顾复习。
教师谈话:用一句话介绍前面几节课学习的关于圆柱的知识。
预设学生回答:圆柱的体积计算;圆柱的'特征;圆柱表面积的计算方法和各种情况。
2、理清思路。
同桌说说计算圆柱体积的步骤,先算出底面积,再算出圆柱的体积;
同桌说说计算圆柱表面积的步骤,先算出底面积和侧面积,再算出圆柱的表面积;
3、揭示课题——圆柱表面积和体积的练习课。
二、基本练习,形成技能。
1、练习三第10题。
根据表中的已知分别计算每个圆柱的未知量。学生独立完成。
2、练习三第11题。
学生读题,理解题意。注意分清3个小问题分别求什么问题。
3、练习三第12题。
引导思考:第1个问题求水池里最多能蓄水多少吨,要从体积入手;第2个问题要弄清楚求的是几个面的面积之和。
4、练习三第13题。
学生读题,分析题意。之后一人板演,全班齐练。评讲时注意后进生的辅导。
5、练习三第14题。
⑴出示题目,理解题目意思。
⑵讨论:塑料薄膜的面积相当于什么?
大棚内的空间相当于什么?
⑶分别怎么算?
引导理解:蔬菜大棚中求需要多少塑料薄膜和空间有多大,分别求圆柱表面积和体积的一半。
6、练习三第15题。
分析:玲玲把一块长方体橡皮泥捏成一个圆柱体虽然形状变了,但什么没变?(体积)
7、练习三第16题。
提问:要求水面高多少分米,要先求什么?(水杯的高)
三、拓展延伸,开阔思维。
1、第19页思考题。
学有余力学生完成。
⑴把圆钢竖着拉出水面8厘米,水面下降4厘米,你能想到什么?
⑵全部浸入,水面上升9厘米,你又能想到什么?怎么算出这个圆钢的体积?
⑶这题还可以怎么想?
让学生明白:上升或下降的水的体积就是那一部分钢材的体积。
【小学数学教学设计】相关文章:
小学数学教学设计07-02
小学数学教学设计07-09
小学数学的教学设计11-17
小学数学圆教学设计09-12
小学数学优秀教学设计07-30
小学数学教学设计(必备)05-30
小学数学单元教学设计11-28
小学数学教学设计(15篇)06-22
小学数学教学设计15篇08-01
小学数学教学设计经典【15篇】10-21