《圆柱的体积》教学设计

时间:2025-09-07 08:22:51 教学设计 我要投稿

《圆柱的体积》教学设计

  作为一名老师,往往需要进行教学设计编写工作,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编收集整理的《圆柱的体积》教学设计,仅供参考,希望能够帮助到大家。

《圆柱的体积》教学设计

《圆柱的体积》教学设计1

  【学习目标】

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  【学习过程】

  一、板书课题

  师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

  二、出示目标

  本节课我们的目标是:(出示)

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  了达到目标,下面请大家认真地看书。

  三、出示自学指导

  认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

  1、圆柱的体积公式是如何推导出来的?

  2、圆柱的体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能做对检测题!

  师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

  四、先学

  (一)看书

  学生认真看书,教师巡视,督促人人都在认真地看书。

  (二)检测(找两名学生板演,其余生写在练习本上)

  第20页“做一做”和第21页第5题。

  要求:1、认真观察,正确书写,每一步都要写出来。

  2、写完的同学认真检查。

  五、后教

  (一)更正

  师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

  (二)讨论

  1、看第1题:认为算式列对的请举手?

  【圆柱的体积=底面积×高】

  2、看第2题:认为算式列对的举手?你是怎么思考的?

  3、看计算过程和结果,认为对的举手?

  4、评正确率、板书,并让学生同桌对改。

  今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

  六、补充练习:

  1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

  2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积()。

  3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.

  下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

  七、当堂训练(课本练习三,第21页)

  作业:第3、4、7、8题写作业本上

  练习:第1题写书上,第2、6、9、10题写练习本上

  八、板书设计

  课题三:圆柱的体积

  圆柱的体积=底面积×高

  课后反思:

  本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的`教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

《圆柱的体积》教学设计2

  教学内容:

  人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

  教学目标:

  1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式。

  教学难点:

  圆柱体积计算公式的推导过程

  教学过程

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积.

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  (设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的'两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

  4、确定方法,探究实验,推导公式。

  (1)、思考你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

  (7)、小结:要想求出一个圆柱的体积,需要知道什么条件?

  (8)、学生自学第17页例4上面的一段话:用字母表示公式。

《圆柱的体积》教学设计3

  教学内容:教材第25、26页例4、“试一试”、“练一练”和练习七的1、2题

  教学目标:

  1、进一步深入地引导学生去了解圆柱,让学生掌握圆柱的体积计算公式,并能解决实际问题。

  2、培养学生自学能力,动手能力,观察分析和归纳知识的能力,让学生理解“转化”的方法。

  教学重点:理解和掌握圆柱体积的计算公式。

  教学难点:圆柱体积计算公式的推导。

  教学准备:圆柱体模具。

  教学过程:

  预习作业检测

  学习计算圆的面积时,是怎样得出圆面积的`计算公式的?

  求下面各圆的面积

  R=1厘米求Sd=4分米求Sc=6.28米求S

  长方体与正方体的体积都可以用什么公式来表示?

  圆柱底面积/平方米高/米体积/立方米

  0.61.2

  0.253

  合作探究

  你们是怎么知道圆柱的体积=底面积×高的呢?生答预习得知。

  课本上是怎么把圆柱体和长方体联系在一起的呢?

  生答,同时师相机用课件展示圆柱体和长方体相互转化的画面。

  用切拼法把圆柱体切成16等份、32等份、64等份,由此得出结论:

  ○1等份越多,拼成的物体越接近于长方体。

  ○2长方体与圆柱体等底等高。

  ○3长方体体积=圆柱体体积

  ○4圆柱的体积=底面积×高(V=sh)。

  根据刚才的结论完成下面的题目:

  ○1一根圆柱形钢材,底面积是20平方厘米,高是1.5米,

  它的体积是多少?生独立完成后,师有选择的找几位学生

  的作业进行投影展示,全班交流评价。

  ○2一个圆柱形状的零件,底面半径5厘米,高8厘米,这

  个圆柱的体积是多少立方厘米?

  引导学生读题,思考。指名说出自己想的过程。生独立解

  答,展示、交流、评价。

  当堂达标检测

  1、“练一练”第1题。

  2、练习七第2题。

  3、“练一练”第2题。

  教学反思:

《圆柱的体积》教学设计4

  教学目标:

  1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。

  教学方法:操作法、推理法、讲授法

  教学过程

  一、复习引新。

  我们以前学过哪些立体图形?

  生答:长方体和正方体。

  它们的体积是怎么求的?

  长方体:长×宽×高,正方体:棱长×棱长×棱长。

  二、教学例4。

  1、出示长方体和正方体。

  它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?

  生答:体积=底面积×高,所以长方体和正方体的体积相等。

  2、出示圆柱。

  猜一猜,圆柱的体积与长方体和正方体的体积相等吗?

  生猜测:相等。

  究竟如何,今天我们就一起来研究圆柱的体积。

  板书课题:圆柱的体积。

  问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)

  生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。

  依据是圆可以转化成长方形计算面积。

  3、出示课件。

  回顾圆的面积计算公式是怎样推导的。

  4、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  5、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  6、教师演示课件。

  把圆柱拼成了一个近似的长方体。

  7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  2、拼成的长方体的高与原来圆柱的.高有什么关系?为什么是相等的?

  3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积=底面积×高

  圆柱体积=底面积×高

  9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  10、用字母如何表示。

  11、出示例4。

  现在你知道圆柱的体积与长方体、正方体的体积相等了吗?

  为什么?

  生答:体积相等,都是用底面积×高。

  V=sh

  三、巩固练习。

  1、出示练习七第一题。

  学生直接把答案填写在表中。

  提问:你是根据什么填写的?

  2、练一练。

  这两题,你打算怎么计算?

  生答:不知道底面积,要先算出底面积,再乘高。

  3.14×2×5 = 62.8(平方厘米)

  3.14×(6÷2)×8 = 226.08(平方厘米)

  3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?

  问:这道题和前面做的有什么不同?怎么计算?

  生答:这是求容积的。所以数据是从里面量的。

  4、练习七第2题。

  观察下面的3个杯子,你能看出哪个杯子的饮料多?

  请学生猜一猜。

  请学生列出三道算式。

  (1)3.14×(8÷2)×4

  (2)3.14×(6÷2)×7

  (3)3.14×(5÷2)×10

  问:你能不求出结果直接比较出大小吗?

  生答:第一个杯子的饮料多。

  5、练习七第三题。

  学生独立解答。

  指名说说是怎样算的?

  3.14×3×5×1= 141.3(千克)

  141.3千克<150千克

  答:这个保温茶桶不能盛150千克水。

  四、总结。

  今天这节课你学到了什么?

《圆柱的体积》教学设计5

  一、教学内容

  教材第25页 例5、例6

  二、学习目标

  1、知识目标:理解、掌握圆柱的体积公式的推导过程,能利用圆柱的体积计算公式解决问题。

  2、能力目标:经历圆柱的体积公式的推导过程,学会运用转化的思想解决一些具体问题。

  3、情感目标:感受圆柱的体积的计算与生活密不可分,激发学生学习数学的热情。

  三、教学重难点

  1、重点:理解、掌握圆柱的体积公式的推导过程。

  2、难点:圆柱体积公式的推导过程。

  四、教学准备

  多媒体课件

  五、教学过程

  <一>创设情境、生成问题

  师:前面我们学过长方体和正方体的体积计算方法,你还记得是怎么计算的吗?(课件出示一个长方体和一个正方体)

  生答:长方体的体积用长X宽X高,正方体的体积是用棱长X棱长X棱长,或者用一个公用的底面积X高来计算

  师:这位同学回答的非常好,今天这节课我们就一起来研究圆柱体的体积计算方法。

  板书:圆柱的体积(课件)

  <二>探索交流、解决问题

  1、猜想

  师:长方体和正方体体积的大小取决于三条棱的长度,或者说取决于底面积和高,那么你认为圆柱的体积取决于什么呢?

  (生自由猜想,并讨论交流)师适当板书记录

  刚才那几个同学都很有想法,觉得圆柱的体积的大小可能和XXXX有关系,有人这样说过,伟大的猜想必须要经过验证才能得到证明,否则的话只能是空想,接下来通过两组图片大家进行验证一下

  (课件出示两组图片,第一组两个圆柱等底不等高,第二组两个圆柱等高不等底)

  师:第一组图片中的两个圆柱有什么特征?

  生:底面一样,但是高度却不一样,体积也不一样

  师:第二组图片中的两个圆柱有什么特征?

  生:这组图片中的两个圆柱高度一样,但是底面却不一样,体积也不一样

  师:那么通过刚才两个同学的回答,你能得出什么结论呢?

  小结:圆柱的体积的大小取决于圆柱底面的大小和高度的大小

  师:那么你能大胆的'猜想一下圆柱的体积是如何计算的吗?

  生猜想......

  师:我们的猜想对不对,还是要用实验去证明

  2、推导圆柱体积计算公式

  师:怎么样进行实验呢?结合我们以往学习几何图形的经验,小组讨论交流,说说自己的想法

  生:我们是把圆柱的底面分成若干偶数分,然后用刀割开,在进行拼组,变成一个长方体,这样通过转化,圆柱就变成了一个近似的长方体,分的份数越多,越接近一个长方体,然后通过求长方体的体积去求圆柱的体积

  师:用心思考的同学总能找到解决问题的办法,那么接下来同学们就利用手里的学习用具完成这个验证实验并完成老师给你们的实践作业纸

  (课件出示作业纸)对应和公式推导

  选取小组的作业纸进行展示,有其他同学进行评定

  课件演示结果

  小结:通过转化的数学思想我们将圆柱的体积转化成已经学过的长方体的体积,圆柱的体积计算公式是底面积乘高。

  另外,圆柱的底面积、直径、半径和周长四个数据中的任意一个和圆柱的高两个数据就可以求出圆柱的体积。

  <三>巩固应用、内化提高

  2、

  3、下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的)

  8cm

  8cm

  498ml

  498ml

  10cm

  10cm

  <四>回顾整理、反思提升

  今天这节课你有什么新的收获说出来和大家一起分享吧!

《圆柱的体积》教学设计6

  教学内容:

  课本第7页圆柱体积

  教学目标:

  理解圆柱体积公式的推导过程,掌握圆柱体积计算公式,并能正确地计算圆柱的体积,提高知识的迁移和转化的能力。

  教学重点

  圆柱体积计算

  教学难点:

  圆柱体积的公式推导

  教学关键:

  实物演示帮助

  教具准备:

  圆柱体积演示模型

  教学过程:

  一、复习铺垫。

  1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高。)

  2、长方体的体积怎样计算?

  学生可能会答出“长方体的体积=长×宽×高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×高”。

  板书:长方体的体积=底面积×高

  3、拿出一个圆柱形物体,指名学生指出圆拄的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?

  请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?

  怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?

  二、学习探索。

  这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。

  板书课题:圆柱的体积

  出示目标:1、推导2、计算

  1、圆柱体积计算公式的推导。

  教师出示一个圆柱,提问:这是不是一个圆柱?用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:“大家看,这是不是一圆?”“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”

  学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。

  然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的`16块。教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?

  大家再看看整个圆柱,它又被拼成了什么形状?(有点接近长方体:)

  指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

  把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?

  小结:可以通过求切拼后的长方体的体积来求圆柱的体积。

  板书:“长方体的体积=底面积×高”。

  请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?

  明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  板书:圆柱的体积=底面积×高

  如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,可以得到圆柱的体积公式:V=Sh

  2、自觉书本第7、8页。

  3、教学例3。

  出示例3。

  (1)教师指名学生分别回答下面的问题:

  ①这道题已知什么?求什么?

  ②能不能根据公式直接计算?

  ③计算之前要注意什么?

  (2)用投影片或小黑板出示下面几种解答方案,让学生判断哪个是正确的?

  ①V=sh=40×1.8=72

  答:它的体积是72立方厘米。

  ②1.8米=180厘米

  V=sh=40×1800=72000

  答:它的体积是72000立方厘米。

  ③40平方厘米=0.4平方米

  V=sh=0.4×1.8=0.72

  答:它的体积是0.72立方米。

  ④40平方厘米=0.004平方米

  V=sh=0.004×1.8=0.0072立方米

  答:它的体积是0.0072立方米。

  (3)自觉书本第8页例3。提出质疑。

  (4)做第9页“试一试”。

  三、课堂小结。

  通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。

  四、巩固练习。练一练1~4题。

  五、《作业本》第4页。

《圆柱的体积》教学设计7

  评价样题:

  学习流程:

  一、创设现实情境,增强探究欲望。

  1、出示橡皮泥做的圆柱体:怎样求出这个圆柱体橡皮泥的体积?你能想出几种办法?

  如果要求(出示百家姓广场上的圆柱形大鼎底座图片)圆柱形大鼎底座的体积,还能用刚才那样的方法吗?那怎么办?(学生试说出自己的办法。)

  看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,对吗?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

  二、亲历建构过程,提高探索能力。

  1、提出问题,大胆猜想

  你能猜一猜圆柱的体积怎样计算吗?你觉得圆柱体积的大小和什么有关?

  (鼓励学生大胆猜测,说出自己的想法)

  2、回顾旧知,帮助迁移

  同学们都很会大胆猜想,但还要小心地论证猜想的科学性。你还记得圆面积转化什么图形的面积来求它的公式的吗?

  (演示课件:圆转化成长方形)

  3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

  4、小组合作,验证猜想

  下面请大家四人一组,借助手中的学具或用萝卜和土豆做成的圆柱分组进行探讨。

  (出示合作提纲)小组长做好分工,并完成记录表。

  活动记录表

  思考:

  1、圆柱体可以转化成哪种立体图形?

  2、两种立体图形之间有怎样的联系?你们发现了什么?得出了什么结论?

  3、怎样用简捷的形式表示你推导出来的公式呢?

  活动过程:

  1、我们用方法,把圆柱体转化成了体。

  2、在这个转化的过程中,变了,没有变。

  3、通过观察比较,我们发现:把一个圆柱体的'底面分成许多相等的扇形,然后切、拼,就能得到一个近似的长方体。这个长方体的底面积等于圆柱体的(),高就是圆柱体的()。因为,长方体体积=(),所以,圆柱体的体积计算公式是v=()。

  5、全班交流,展示评价。

  评价交流中,借助评价样题。同时课件演示切拼的过程,同时演示将圆柱底面等分成32份、64份……,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。 6、根据学生的发现引导学生推导出:

  圆柱的体积=底面积×高,

  用字母表示v = sh。

  7、反馈练习。

  (1)要求圆柱体积,必须知道哪些条件?

  (2)出示例5,学生借助圆柱体积公式自主完成,并及时订正反馈。

  圆柱的体积教学设计 相关内容:用转化的策略解决分数问题“长方体和正方体的表面积”的教学实录小学数学《倒数的认识》教案北师大版6年级数学第11册第1单元《圆的认识》教案1、分数四则混合运算《按比例分配》课后反思百分数的意义和读写法反思百分数(三)用百分数解决问题查看更多>>小学六年级数学教案

《圆柱的体积》教学设计8

  各位领导、老师、同学们:大家好,今天我讲课的题目是《圆柱的体积》

  圆柱的体积是本单元的教学重点。在此之前,学生已经学过了圆面积公式的推导,对转化的思想方法和“等积变形”已有所了解;长方体、正方体的体积公式是本节课的旧知停靠点;而这节课的顺利学习将为以后圆锥体积的学习铺平道路。从能力培养方面来看,本节课的内容有利于发展学生的空间观念,培养学生的逻辑推理能力,在公式推导过程中,还可以培养学生猜想、类推、对应的数学思想和方法。另外,就情感的角度而言,通过学生体验探索数学奥秘的过程,可以培养学生对数学学习的兴趣和探索精神。

  由此,预设以下教学目标:

  1、使学生经历用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式的过程,使学生能总结和理解圆柱的体积公式,能够运用公式正确的计算圆柱的体积。

  2、培养学生观察、猜测、分析、比较、综合的学习思考方法。

  3、渗透转化、等积变形、极限的数学思想。

  4、通过学生体验圆柱体积公式的推导过程,让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感;

  圆柱的体积公式推导过程可以培养学生多方面的能力,这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,因此我把圆柱的体积公式推导过程做为本节课的教学重点;而学生的思维是以具体形象思维为主,逐步向抽象逻辑思维过渡,在圆柱体积公式的推导过程中,要用到等积变形、对应、以及逻辑推理的知识,学生理解起来可能会有点困难,所以我认为圆柱的体积公式推导过程也是本节课的教学难点。

  本节课要采用的教学方法有:演示法、提问法等,在学习过程中要用到的方法有:观察法、思考法等。

  教学用具:圆柱模型,装水的杯子等

  这节课主要有五大环节

  一、实验引入

  师:我们来观察一个现象,把小圆柱放入水里,看看有什么变化

  生:变了变了,水面上升了。

  师:水面为什么上升

  生:小圆柱浸没在水中,将水挤压上升,求小圆柱的体积也就是求上升水面的体积,即圆柱体积。

  师:你们想不想知道圆柱体积怎样计算

  生齐答:想。

  师:今天我们就一起来研究圆柱体积的`计算方法。(板书:圆柱的体积)

  二、探究新知

  师:出示课件,根据课件演示逐步推导出圆柱体的体积计算方法

  长方体的体积=底面积×高

  | |

  圆柱体的体积=底面积×高

  v = s h

  三、,运用新知,解决问题

  出示例1:一根圆柱形钢材,底面积是50平方厘米,高是210厘米,它的体积是多少

  师:咱们大家理解自己推导的圆柱体的体积公式了吗下面我们

  50×210=10500(cm3)

  答:圆柱形钢材体积为10500cm3

  四、巩固运用

  1,填表:请同学看屏幕回答下面问题,谁想好了谁就站起来说。

  底面积(m2) 15 6.4 0.05

  高(m) 3 4 2

  圆柱体积(m3)

  五、总结评价

  师:今天我们学习了圆柱体积的推导方法及计算公式。

  板书设计:

  圆柱的体积

  v= s h

  例4:一根圆柱形钢材,底面积是50平方厘米,高是210厘米,它的体积是多少

  50×210=10500(cm)

  答:圆柱形钢材体积为10500立方厘米。

《圆柱的体积》教学设计9

  【教材简析】:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。

  【教学内容】:

  p19-20页的内容和例题,完成“做一做”及练习三第1~4题。

  【教学目标】:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公 式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的'自主探索意识。

  【教学重点】:掌握圆柱体积的计算公式。

  【教学难点】:圆柱体积的计算公式的推导。

  【教学过程】:

  第一课时本册总课时:12 课时

  一、复习

  1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、什么叫做物体的体积?你会计算下面那些图形的体积?

  3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  (1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)

  (2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)

  (3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)

  (3)通过观察,使学生明确:

  长方体的底面积等于圆柱的底面积,

  长方体的高就是圆柱的高。

  长方体的体积=底面积×高,

  所以圆柱的体积=底面积×高,

  v = s h

  圆柱的体积计算公式是:

  v=s h

  2、课堂练习:

  (1)出示做一做:一根圆柱形钢材,底面积是75平方厘米,长90厘米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)让学生解答和板算,最后师生共同完成.

  解:v=sh

  =75×90

  =675(立方厘米)

  答:它的体积是675立方厘米。

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的(v=π rh)

  4.作业:

《圆柱的体积》教学设计10

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

  二、自主探究

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  (设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

  (设计意图 : 通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

  4、确定方法,探究实验,验证体积公式。

  (1)、首先要求学生利用实验工具,自主商讨确定研究方法。

  (2)、学生通过讨论交流确定了两种验证方案。

  方案一:将圆柱c放入水中,验证圆柱c的体积。

  方案二:将学具中已分成若干分扇形块的.圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

  (3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)

  (4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

  (7)、小结:

  要想求出一个圆柱的体积,需要知道什么条件?

  (8)、学生自学第8页例4上面的一段话:用字母表示公式。

  学生反馈自学情况:

  v=sh ( 设计意图 这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)

《圆柱的体积》教学设计11

  教学内容:

  人教版六年级下册第19~20页圆柱体积公式的推导和练习三的第1~3题。

  教学目标:

 1、通过观察、操作、讨论等教学活动过程,理解圆柱体积计算公式的推导过程,并会正确地计算圆柱的体积。

  2、在图形的变换中,培养迁移能力,逻辑思维能力,并进一步发展其空间观念。

  3、探索和解决问题,体验转化及极限的思想方法。

  4学会由未知向已知转化的学习方法。

  教学重点:掌握和运用圆柱体积计算公式。

  教学难点:掌握圆柱体积公式的推导过程。

  教学方法:尝试指导法

  学法指导:猜想→讨论→操作→概括→尝试→辨析→总结

  教学用具:圆柱的体积公式演示课件。

  学习用具:准备推导圆柱体积计算公式所用的学具。

  教学过程:

一、激疑引入

  同学们,你们看,茶叶罐是什么形状的?如何求它的体积?你有办法吗?……今天,就让我们一起来研究圆柱体积的计算方法(板书课题:圆柱的体积)。

  二、探究新知

  1、猜想

  现在该怎样来计算圆柱的体积呢?不妨大胆猜想一下好吗?

  2、表扬鼓励,实践迁移

  (1)有同学能把圆柱转化成我们已学过的立体图形,来计算它的体积,真是既聪明又能干!

  让学生互相讨论,思考应如何转化,然后组织全班汇报。(把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的.长方体了。)

  (2)操作:学生操作学具,切割拼合。

  (3)感知:将圆柱体模具(已切好)当场演示。

  ①让一位学生把切割好的一半拿上又叉开;

  ②另一位学生将切割好的另一半拼合上去;

  ③观察得到一个什么形体?同时你发现了什么?逐步引导学生观察、对比、分析。

  (4)课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

  (5)讨论:圆柱与所拼成的近似长方体之间的有什么联系?

  (6)汇报:你发现了什么?【圆柱→近似长方体:①体积相等;②底面积相等;③高相等;④表面积不相等。】

  (7)概括总结

  ①让学生试着总结公式;

  ②老师在学生总结的基础上用课件出示

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆柱体的体积=底面积×高

  用字母表示:v=sh

  3、运用新知,尝试解答

  [做一做]一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?

  (1)尝试:让学生理解题意,自己尝试解答。

  (2)展示:根据v=sh可得:75×90=6750(cm3)

  (3)讲评并强调:计算体积时结果应用体积单位。

  (4)拓展:如果已知圆柱底面的半径r和高h,该怎么来计算圆柱的体积呢?如果已知的是底面的直径d和高h呢?

  让学生独立思考,写出计算公式,再相互交流。

  得到:v=πr2h

  [完成教材第20页例6]一个圆柱形水杯,从里面量底面直径是8厘米,高是10厘米。已知一袋纯牛奶有498mL。问这个杯子能不能装下这袋牛奶?

1、教师引导学生:要回答这个问题,先要计算出杯子的容积。

  2学生独立计算杯子的容积,然后与牛奶的容积作比较,就完成了任务。

  三、巩固练习

 1、完成下表。

  底面积/ m2

  高/m

  圆柱的体积/ m3

  7

  3


  5.6

  4


  2一个压路机的前轮是圆柱形,轮宽2.5米,半径1米。它的体积是多少立方米?

  四、全课小结

  同学们,今天我们学习了什么知识?你还有什么不懂的问题?

  五、布置作业(练习三第2、3题)

  板书设计

  圆柱的体积

  圆柱转化近似长方体

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆柱的体积=底面积×高

  V柱=sh

  V柱=πr2h

《圆柱的体积》教学设计12

  教学目标

  1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

  2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

  3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式进行正确计算。

  教学难点:

  理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

  教学过程:

  一、情景导入:

  1、教师:(出示课件)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?

  学生:

  1.比平日多了两个蛋糕。

  2.两个蛋糕一个大一个小。

  3.蛋糕都是圆柱形的。

  2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?

  学生:蛋糕大,意味着圆柱的体积大。

  3、教师:那你还知道什么是圆柱的体积吗?

  学生:圆柱的体积就是圆柱体占空间的大小。

  4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?

  学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

  教师:板书:圆柱的体积

  二、课上探究

  1、教师:同学们回忆一下我们还学过那些立体图形?

  学生:还学过正方体和长方体。

  教师:它们的体积怎样计算?(多媒体课件出示长方体)有什么共同点?

  学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

  2、猜测圆柱的体积与什么有关

  师:拿出圆柱体,让学生猜想圆柱体积与什么有关。

  生1.圆柱的.体积与圆柱的高有关。

  生2.圆柱的体积与圆柱的底面积有关。

  生3.圆柱的体积与圆柱的底面周长有关。

  生4.圆柱的体积与圆柱的底面半径有关。

  3、推导圆柱体积公式

  ①师:同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?

  生:把圆转化成近似长方形来求面积的。

  ②师:我们一起来回忆把圆转化成近似长方形的过程,(课件)

  师:你发现了什么?

  生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。

  ③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?

  生:把圆柱转化成近似的长方体。

  ④师用圆柱体演示转换过程,让学生说怎样转换的。

  生:把圆柱平均分成16份拼成一个近似的长方体。

  ⑤师:为了让大家看的更清楚,我们再演示一下这个转化过程。

  课件再次演示把圆柱等分16等份,拼成近似的长方体。

  再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?

  生:分成的份数越多,拼成的图形越接近长方体。

  ⑥师:课件出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?

  学生分组讨论,汇报:

  生:长方体的高和圆柱的高相等。

  生:长方体的底面积和圆柱的底面积相等。

  ⑦师:你是怎么想的?

  生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。

  ⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。

  生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径

  师:课件演示长方体的体积=底面积×高

  ⑨师:那么圆柱的体积等于什么呢?

  生:圆柱的体积=底面积×高

  ⑩下面我们再一起回忆一下转化的过程,(课件)

  让学生独立填答案,汇报:

  三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。

  四、学生谈收获。

《圆柱的体积》教学设计13

  一、课前系统部分

  (一)、课标分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在课程标准中属于第二阶段(四-六年级)中第二个版块图形与几何中的教学内容,对《圆柱的体积》教学内容的要求是:结合具体情境,探索并掌握圆柱的体积的计算方法,并能解决简单的实际问题。

  (二)、教材分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。

  (三)、学生分析

  六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的`方法,学会运用数学的思维方式去认识世界。

  (四)、教学目标

  知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

  过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

  (五)、教学重难点:

  1、教学重点:掌握圆柱体积的计算公式。

  2、教学难点:圆柱体积计算公式的推导。

  (六)、教学策略

  介绍进行课堂教学所要采取的方法与技巧。实践探索、小组合作交流、演绎推理。

  (七)、教学用具:电脑课件、圆柱体积演示器、正圆柱体。

  二、课堂系统部分——教学过程

  (一)、创设情境,引起猜想:

  1、激发兴趣:圆柱体转化成近似长方体。

  课件展示:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。)师:通过观察,同学们发现这两个物体都有什么是相同的?

  生:体积、高。

  (设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。)

  师:揭示课题:圆柱的体积。

  (二)、推导圆柱体积计算公式

  师:怎样用我们已有的知识来计算圆柱的体积?生:长方体的体积可以通过底面积乘高得到,我想圆柱的体积是不是也可以通过底面积乘高得到呢?

  师课件展示:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。

  我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就

  学生回答:就越接近于长方体了。

  师课件展示:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。)

  师:通过观察,你知道了什么?

  生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  师课件展示:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×215;高,V=Sh。

  (三)、练一练:

  1、师课件出示:一根圆柱形木料,底面积为75平方厘米,长90厘米。它的体积是多少?

  生:完成后小组内交流。

  2、师课件出示:判断题

  一根圆柱形钢材,底面积是50平方厘米,高是米。它的体积是多少?

  师:出示下面几种解答方案,让学生判断哪些是正确的。 ①50×=105(立方厘米)

  ②米=210厘米,50×210=(立方厘米)③ 50平方厘米=平方米,×=(立方米)④ 50平方厘米=平方米,×=(立方米)

  生:小组讨论,学生汇报并说出理由。

  师:点击出现:“√” 。

  师小结:计算时既要分析条件和问题,还要注意要先统一计量单位。

  (四)、两个圆柱体积计算公式的比较。

  师课件展示:点击出现圆柱,再点击出现半径r、高h如果已知圆柱底面半径r和高h,这样的圆柱的体积应该怎样计算呢?师课件展示:点击出现V=πrh。师课件展示:点击出现V=Sh。

  师:说说这两个体积计算公式之间有什么联系呢?生可能回答:这两个体积计算公式中πr就是底面积S(设计意图说明:比较两个圆柱体积计算公式,明确两个体积公式之间的关系。)

  小结:题目给了圆的半径,我们先算出圆柱的底面积,再算它的体积,如果题目给的是圆的直径呢?

  生可能回答:我们仍然先算出圆柱的底面积,再算它的体积。

  (五)、拓展训练练习一:填表

  师课件展示,生小组交流完成。练习二:计算圆柱的体积师课件展示,生小组交流完成。

  练习三:师课件展示:根据圆柱的体积公式计算一个圆柱的体积是80cm3,底面积是16cm3。它的高是多少cm?

  生小组交流完成。

  (六)、小结

  通过今天的学习,我们懂得,可以把圆柱转化为一个近似的长方体来计算它的体积。知道了圆柱的体积可以用V=Sh或者V=πrh来计算。

  (七)、板书设计圆柱的体积

  圆柱的体积=底面积×高=Sh=πrh

  三、课后系统部分——教学后记

  圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上十分注重从已知知识和方法入手,让学生经历“转化图形、建立联系、推导公式”的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。

《圆柱的体积》教学设计14

  【教学目标】

  1、探索圆柱体积的计算方法,利用数学思想,体验数学研究的方法。

  2、让学生掌握圆柱体积的计算方法,运用体积公式解决简单的实际问题。

  3、通过把圆柱体转化成近似的长方体,提高学生解决问题的能力,感受获得成功的喜悦。

  【教学重点】掌握和运用圆柱体积的计算公式。

  【教学难点】圆柱体积公式的推导过程。

  【教学方法】直观教学法,先用教具让学生观察比较,再让学生动手操作。在实践操作过程中理解掌握圆柱体积的计算方法。

  【教学过程

  一、情景导入,复习旧知。

  1、什么是圆柱的体积?

  ①出示情境图。修一面墙,用哪一种砖,所要的块数较少?为什么?

  ②什么叫做物体的体积?

  ③长方体的正方体的体积计算公式是什么:从公式中可以看出,要计算长方体和正方体的体积必须得到哪些明确的数据?

  ④推测:圆柱的体积可能与它的什么有关?

  2、导入新课。

  这节课我们就一起来探索圆柱体积的计算方法。板书课题:“圆柱的体积”

  二、探索新知

  1、比较大小,探究圆柱的体积与哪些因素有关。(让学生先试着说说)

  (1)图1:比较等高不等底的三个圆柱的体积。(学生通过观察发现等高时底面积越大圆柱的体积也就越大)

  (2)图2:比较等底不等高的五个圆柱的体积。(学生通过观察发现等底时高越大圆柱的体积也就越大。)

  (3)圆柱的体积计算公式可能是什么样的?V=Sh 2、大胆猜想,求证体积公式。

  (1)引导学生回忆长方体、正方体的体积计算方法。

  (2)设疑:圆柱的体积又该怎么样计算呢?根据以前学过的知识你可以做出怎样的假设?

  (3)学生小组讨论交流。

  (4)各小组参加全班交流汇报。(把圆柱底面分成许多相等的小扇形,把圆柱切开,就可以拼成一个近似的长方体,长方体的体积是底面积乘高,圆柱的体积也可能就是底面积乘高来计算的。)

  3、演示转化过程,推导公式。

  (1)老师操作转化过程。先分一个四或八等分的再分手上的这个十六等分的。

  (2)学生带问题操作转化过程。

  a:拼成的长方体的底面积等于圆柱的什么?

  b:拼成的`长方体的高又是圆柱的什么?(长方体的底面积等于圆柱体的底面积,高等于圆柱体的高。)

  师生共同完成推导过程。

  长方体的体积=底面积×高 圆柱的体积=底面积×高 v = s h 圆柱的体积计算公式就是:v=sh

  (4)如果知道圆柱的底面半径r和高h,圆柱的体积公式又可以怎样来写呢?v=πr2h

  (5)教材第25页“做一做”第1、2题。(第2题先让学生说说解题步骤,再齐练)

  4、教学例6。

  (1)出示例6。读题,说说从题中获得的信息。

  (2)引导学生思考:解决这个问题就是要计算什么?

  老师:求杯子的容积就是求这个杯子可容纳物体的体积,计算方法跟圆柱体积的计算方法相同。

  (3)学生独立解决问题。

  (4)组织交流反馈。

  交流时,引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。

  三、 巩固应用

  1、完成教材第26页“做一做”第一题。

  (1)要判断这杯水够不够喝,需要知道什么?你打算分哪几步计算?尝试完成。

  (2)要求这个问题,需要先求什么?再求什么?独立完成。

  2、完成教材第28页练习五第2题。

  (1)尝试完成。

  (2)说说解题思路。

  3、完成教材第28页练习五第3题。

  (1)尝试完成。

  (2)说说解题思路。

  四、课堂小节

  今天这节课,我们一起探究了圆柱体积的计算方法。在探究的过程中,我们经历了猜测、实验、证明的思维过程。圆柱体积的计算方法和长方体、正方体相同,都可以用“底面积×高”来求。

  五、课堂作业

  教材练习五第4、5题。

  板书设计:

  圆柱的体积 长方体的体积=底面积×高 圆柱的体积 =底面积×高 V= s h 圆柱的体积计算公式是v=sh=πr2h

《圆柱的体积》教学设计15

  一、创设情景、感知圆柱体积的概念。

  教师拿出一个装了半杯水的烧杯,拿出一个圆柱形的物体,准备投入烧杯中。

  师:同学们想一想会发生什么情况?(教师将圆柱形的物体投入水中。)请仔细观察后,说一说你有什么发现?

  生:水面上升一些。圆柱形的物体挤掉了原来水占有的空间。

  师:我们通常把这个空间叫体积。

  生:我发现上升的水的体积和圆柱的体积是相等的。

  师:同学们发现得都很精彩,谁来说一说什么叫圆柱的体积。

  生:圆柱所占空间的大小就叫圆柱的体积。

  二、比较大小、创设求圆柱体积的情景。

  教师又拿出一个圆柱。(底面略小而高长一些,体积相差不多)

  师:这两个圆柱的体积,哪个比较大一些?

  生:第一个比较大,因为它高一些。

  生:第二个比较大,因为它粗一些。

  生:他们都是猜的。第一个圆柱它虽然高一些,但底面积小一些;第二个圆柱虽然底面大一些,它是的高少了一些。无法准确地比较它们的大小。

  师:有什么办法能比较它们的大小呢?(小组讨论)

  生:准备半杯水,将第一具圆柱浸没水中,作好标志,再把第二个圆柱浸没水中,作个标志,哪个水面上升的高一些,哪个圆柱的体积就比较大。

  生:要学会计算圆柱的体积后就好解决了。

  三、大胆猜想,感知圆柱体积公式。

  师:你觉得圆柱体积的大小和什么有关?

  生:和圆柱的高有关,一个圆柱它的高增加,它的体积也会变大些。

  生:和圆柱的底面大小有关,一个圆柱它的底面增加,它的体积也会变大些。

  师:很好!大胆地推想一下圆柱的体积应如何计算?(小组讨论)

  生:我猜想用圆柱的底面积乘以它的高就可以求出体积。

  师:你同意他的猜想吗?说说你的理由。

  三、小心求证,论证圆柱体积公式。

  师:同学们都很会大胆猜想,但还要小心地论证猜想的科学性。

  教师拿出一具圆柱体体积教具,把它藏在衣服里,只露出一具底面。

  师:你看到了什么?

  生:圆形。

  师:你还记得圆面积转化什么图形的面积来求它的公式的吗?

  生:把圆的面积转化成长方形的面积。

  教师把整个圆柱拿出来,问:怎么求这个圆柱的体积呢?(小组讨论)

  生:可以把这个圆柱转化成我们已经会求的长方体的体积来求体积。

  师:说说你们小组是如何转化的。

  生上台操作展示。生:我们把圆柱平均分成16分,可以拼成一个近似的长方体,这个长方体的.高就是圆柱的高,这个长方体的底面积和圆柱的底面积相等。所以,圆柱的体积可以用底面积乘高来求。

  师:你同意吗?照这样做一遍,然后说一说如何求圆柱的体积。

  最后学生自主得出圆柱的体积公式。

  【片段分析】

  本节课的设计过程是:"创设情景----发现问题----提出问题----猜想假设----实践操作----解决问题",这一教学过程,充分体现了以学生为主体的教学思想,教师充分地相信尊重学生,鼓励其积极主动地探究问题,让学生体验解决问题的过程,体验解决问题的成功。

  1、注重了课程资源的开发。由于学生生活背景和思考角度的不同,所使用的方法必然是多样化的,教师应尊重每位学生个性化的想法,并认真倾听。本节课中多处合理地开发了学生的课程资源:一是在感知体积的概念时,教师通过做圆柱放入水的实验,实实在在地让学生用生活经验感知体积的存在;二是在猜想体积公式时,学生一般的经验是如果一个圆柱高(底面)不变,底面(高)越大体积越大,学生自然地就会利用自己的经验想到圆柱的体积的大小与底面和高有密切的联系;三是在体积公式猜想时。猜想方法的多样化就体现了问题解决策略的多样化。有的学生联系实践生活联想,把圆柱看作是有很多个相等的圆叠加起来的;有的学生联系旧知识来推想,因为长文体和正方体的体积公式都是底面积乘高。学生是学生真正的主人,只有调动学生的学习积极性和平时的各种知识积累,这种知识的积累可以是以前学过的知识和方法,也可以生活中的经验或经历,这些都是课程资源,教师只有充分利用了这些课程资源,学生的学习活动才有可能真正成为有意义的过程。

  2、注重数学思想方法和学习能力的培养。能力的发展决不等同于知识与技能的获得。能力的形成是一个缓慢的过程,有其自身的特点和规律,它不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。本节课沿着“猜想-验证”的学习流程进行,给学生提供较充分的探索交流的空间,组织、引导学生“经历观察、实验、猜想、证明等数学活动过程”,并把数学推理能力有机地融合在这样的“过程”之中,有力地促使了学习改善学习方式。本课中学生“以旧推新”-大胆地进行数学的猜想;“以新转旧”-积极把新知识转化为已能解决的旧问题;“新旧交融”-合理地把新知识纳入到原有的认识结构中,教学活动成了学生自己建构数学知识的活动。

  整个教学过程是在“猜想-验证”的过程中进行的,是让学生在和已有知识经验中体验和理解数学,学生学会了思考、学会了解决问题的策略,学出自信。

【《圆柱的体积》教学设计】相关文章:

《圆柱的体积》教学设计10-30

《圆柱的体积》教学设计15篇08-05

圆柱体积教学设计10-09

圆柱的体积教学反思11-16

圆柱的体积教学反思11-06

圆柱的体积教学反思08-29

《圆柱的体积》教学反思08-30

《圆柱的认识》教学设计12-01

圆锥的体积教学设计01-28

《圆柱的表面积》教学设计06-14