小学六年级数学教学设计

时间:2024-10-31 16:41:29 教学设计 我要投稿

小学六年级数学教学设计

  作为一名教职工,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。那么大家知道规范的教学设计是怎么写的吗?下面是小编收集整理的小学六年级数学教学设计,欢迎阅读与收藏。

小学六年级数学教学设计

小学六年级数学教学设计1

  设计说明

  本节课内容是在学生初步认识了圆,学习了圆的周长及多边形面积的基础上进行教学的。在教学设计上有以下特点:

  1.注重联系生活实际,开展探究性的数学活动。

  学生从认识直线图形发展到认识曲线图形是一次质的飞跃,他们已经能从形象思维发展到抽象思维,对事物已经具有了一定的立体思维空间,所以在教学中注重联系生活实际,利用学具开展探究性的数学活动,使学生从中获得成功的体验,感受到数学的价值,从而更加热爱学习数学,热爱生活。

  2.在教学中渗透数学思想,完成新知构建。

  在学习数学的过程中,数学知识虽然很重要,但更重要的还是以数学知识为载体所体现出来的数学思想方法。圆是一个由曲线围成的图形,圆的面积计算,对学生来说有一定的难度,所以在让学生猜测和运用小正方形来测量的基础上,利用学具动手操作,让学生自主发现圆的面积和拼成的长方形面积之间的关系,从而推导出圆的面积计算公式,降低了学习的难度,同时将化曲为直的数学思想融入到教学活动中,有效地完成了知识的构建。

  课前准备

  教师准备 PPT课件 圆的面积演示教具 大小不同的两张圆形纸片

  学生准备 剪刀 小正方形透明塑料片 圆形学具

  教学过程

  ⊙复习铺垫,导入新课

  1.回忆圆的周长的计算方法。

  (1)已知直径怎样求圆的周长?

  (2)已知半径怎样求半圆的周长?

  2.建立圆的面积的概念。

  (1)感知圆的面积的大小。

  师拿出准备好的大小不同的两张圆形纸片,问:大家看这两张圆形纸片,它们的面积一样大吗?

  师明确:圆的面积有大有小。

  师:谁能说一说什么叫做圆的面积呢?

  师指出:圆所占平面的大小叫做圆的面积。

  (2)区别圆的面积和周长。

  指导学生拿出准备好的圆形学具,同桌之间用手摸一摸,指一指:哪儿是圆的周长?哪儿是圆的面积?

  学生操作后,师生共同明确:圆的周长是指围成圆一周的封闭曲线的长;圆的面积是指圆所占平面的大小。

  设计意图:在实际的教学中学生很容易混淆圆的周长和面积,因此,设计了摸一摸、指一指这个活动,让学生在初步感知圆的面积和周长的区别的同时,充分感知面积的意义。着重对容易出错的地方进行对比和强化,尽可能地让学生减少差错。

  ⊙动手操作,探究新知

  1.通过度量,猜想圆的面积的大小。

  用边长等于半径的小正方形透明塑料片,直接度量圆的面积,(课件演示度量过程)观察后得出圆的面积比4个小正方形小,又比3个小正方形大。初步猜想:圆的面积相当于半径平方的3倍多一些。

  师:由此看出,要求圆的精确面积是无法通过度量得出的。

  2.回忆多边形面积公式的推导过程。

  想一想,我们是用什么方法推导出平行四边形、三角形和梯形的面积公式的?

  (课件演示平行四边形的面积推导过程)

  过渡:我们在学习推导几何图形的面积公式时,总是把新的图形通过分割、拼合等办法,将它们转化成我们熟悉的图形。今天我们能不能也用这样的方法推导出圆的面积计算公式呢?

  3.动手操作。

  (1)组织学生分别把圆平均分成16份、32份,然后剪开,拼成两个近似的长方形。

  课件演示剪拼的过程:

  (2)讨论:

  ①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段)

  ②圆和近似的长方形有什么关系?(形状变了,但面积相等)

  ③把圆平均分成16份和32份后,拼成的'图形有什么区别?(把圆平均分成32份后拼成的图形更接近于长方形)

  ④如果把一个圆平均分成64份、128份……拼成的图形会怎样呢?

  (课件演示,得出结论:圆平均分成的份数越多,拼成的图形越接近于长方形)

  (3)观察、汇报拼成的长方形与圆的关系。

  ①拼成的长方形的长和宽与圆的周长和半径有什么关系?(结合学生汇报,课件演示)

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  ②拼成的长方形的面积与圆的面积有什么关系?

  (引导学生理解:形状不同,面积相等)

  (4)推导圆的面积计算公式。(引导学生结合图形理解)

  因为拼成的长方形的面积相当于原来圆的面积,拼成的长方形的长相当于原来圆的周长的一半,宽相当于原来圆的半径,且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=×r

  因为C=2πr,所以S圆=πr×rS圆=πr2。

小学六年级数学教学设计2

  设计说明

  1.教学中注重用迁移法学习新知。

  《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。这样才能够充分发挥知识迁移的作用,实现知识的有效重组。本节课是在学生学习了圆的相关知识的基础上进行教学的。教学设计从扇形和圆的关系入手,借助知识的迁移来了解扇形的特征,有利于学生对新知的理解,便于学生记忆。

  2.运用现代信息技术这种有效的教学手段。

  《数学课程标准》指出:把现代信息技术作为学习数学和解决问题的工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。在教学弧、扇形、圆心角的过程中,利用PPT课件的动画演示讲解更为直观、生动、形象,使学生对新知的理解一目了然,也便于学生对扇形特征的理解和掌握。将信息技术与课程内容有机地进行结合,注重课件的有效性,为学生提供丰富的学习资源,充分发挥课件的效果,加深学生学习的印象,激发学生强烈的求知欲。

  课前准备

  教师准备:PPT课件、学情检测卡

  学生准备:大小不同的圆、圆规、直尺、彩笔

  教学过程

  ⊙激趣导入

  课件出示生活中常见的扇形物体。

  师:这些物体分别叫什么?

  (学生依次回答:扇贝、扇形藻、折扇)

  师:这些物体的名称有什么共同点?

  学生回答后,师引出课题:这节课我们就来学习扇子形状的平面图形。在数学上,我们把这类图形称为“扇形”。(板书课题:扇形)

  设计意图:从生活中熟悉的事物中导入,直观形象,学生能很快建立扇形的表象,从而激发学生主动学习的热情,产生探索新知的欲望。

  ⊙教学新课

  1.认识弧。

  课件出示扇形图。

  (1)用课件先画出一个虚线的圆,在圆上取AB两点,再用彩色的线画出这两点间的圆的部分。

  (2)学习弧的概念。

  师指图:这段彩色的线叫做“弧”。因为这条弧的两个端点分别是AB,所以称这条弧为“弧AB”,弧是圆上的一部分。

  课件出示概念:圆上AB两点之间的部分叫做弧,读作:“弧AB”。

  (3)尝试画弧。

  学生试着在自己的'练习本上画弧。

  教师课件显示出“弧AB”的反弧,让学生知道这也是一条弧。

  2.认识扇形。

  (1)课件演示:先出现彩色的OAOB两条半径,同时在弧AB与半径OAOB所围成的图形中涂上颜色。

  (2)扇形的概念。

  师指图:这个涂有颜色的图形就是扇形。

  师:根据刚才的演示和讲解,大家能说说什么是扇形吗?

  (生回答后,师小结)一条弧和经过这条弧两端的两条半径所围成的图形叫做“扇形”。

  (3)指导学生在练习本上画出扇形。

  (学生在练习本上尝试画出扇形)

  (4)教师指着屏幕上圆中扇形的另一边空白部分问学生,这个图形叫什么?

  (学生猜测,答案不唯一)

  师明确:这个图形也是由一条弧和经过这条弧的两端的两条半径围成的图形,所以也是一个扇形。

  3.认识圆心角。

  (1)课件显示:OAOB两条半径闪动,然后问:“两条半径所夹的角∠AOB,它的顶点在哪儿?”

  师明确:像这样,顶点在圆心的角叫做圆心角。

  (2)让学生在自己画的扇形中找圆心角,并标上∠1的标志。

  问:说一说自己画的∠1为什么也是圆心角。

  师生共同总结:圆心角应该满足两个条件:

  一是角的顶点在圆心;

  二是角的两条边是圆的半径。

  (3)课件出示三个大小、方向不同的扇形图,让学生判断这些图形是不是扇形。

  师小结:这三个图形都可以称为扇形,因为它们都是由“一条弧”和“经过这条弧两端的两条半径”所围成的图形。

小学六年级数学教学设计3

  教学内容

  人教版教材小学数学六年级第十二册“数学广角”例1及相关内容。

  教学目标

  (1)经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

  (2)通过操作发展学生的类推能力,形成比较抽象的数学思维。

  (3)通过“鸽巢问题”的灵活应用感受数学的魅力。

  教学重点

  经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

  教学难点

  理解“鸽巢问题”里的先“平均分”,再得出至少数的过程。并对一些简单实际问题加以“模型化”。

  教具、学具准备

  若干个纸杯(每小组3个)、笔(每小组4根)、扑克牌1副

  教学过程

  一、扑克魔术导入。

  请同学们看我表演一个“魔术”。拿出一副扑克牌(去掉大小王)52张中有四种花色,请一个同学帮我从中随意抽5张牌,无论怎么抽,总有一种花色至少有2张牌是同花色的你相信吗?

  你能说明其中的道理吗?老师不用看就知道“一定有2张牌是同花色的对不对?假如请这位同学再抽取,不管怎么抽,总有2张牌是同花色的,同意么?

  其实这里蕴含了一个有趣的数学原理,这节课我们一起探究这个数学原理?(板书课题:鸽巢问题)

  二、学习例1,列举探究

  1、用枚举法深入研究4支笔放进3个纸杯里。

  (1)要把4支笔放进3个纸杯里(纸杯代替),有几种放法?请同学们想一想,小组摆一摆,记一记;再把你的想法在小组内交流。(提醒学生左3右1与左1右3是同一种方法——不管杯子的顺序)

  (2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)

  (3)观察这四种放法,同学们有什么发现呢?(不管怎么放,总有一个纸杯里至少放有2枝铅笔)让孩子们充分地说。

  板书:枚举法

  (4)“总有”什么意思?(一定有)

  (5)“至少”有2本是什么意思?(最少是2本,2本或者2本以上)。

  2、假设法

  ①还可以这样想:先放3支,在每个笔筒中平均放1支,剩下的'1支再放进其中的一个笔筒。所以至少有一个笔筒中有2支铅笔

  ②思考:为什么要先在每个笔筒里平均放一支呢?

  ③继续思考:

  6只铅笔放进5个笔筒,总有一个笔筒至少放进()支铅笔。

  10只铅笔放进9个笔筒,总有一个笔筒至少放进()支铅笔。

  100只铅笔放进99个笔筒,总有一个笔筒至少放进()支铅笔。

  ④通过刚才的分析,你有什么发现?谁能试着说一说?

  只要铅笔数比笔筒多1,总有一个笔筒里至少放进2支铅笔。

  3、介绍鸽巢问题的由来。

  (1)抽屉原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷(Dirichlet)提出并运用于解决数论中的问题,所以该原理又称“狄利克雷原理”。

  (2)总结:把m个物体任意放进n个抽屉中,(m>n,m和n是非0自然数),若m÷ n= 1……a,那么一定有一个抽屉中至少放进了2个物体。

  三、巩固练习:

  1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

  2、随意找13位老师,他们中至少有2个人的属相相同。为什么?

  四、总结全课:这节课你有哪些收获呢?

  (上面点学生说一说,不全的老师补充)

  五、设疑留悬念。

  如果是把7本书放进3个抽屉里,那么总有一个抽屉至少放进()本书。

  如果有8本书呢?

  六、作业布置

  1.完成教材课后习题p71第5、6题;

  2.完成练习册本课时的习题。

小学六年级数学教学设计4

  设计说明

  本节课从学生们熟悉的搭积木游戏入手,观察与游戏相关的立体图形,使学生认识到一个物体从不同角度观察,所观察到的形状可能是不同的,这是学生思维的过渡。因此,本节课的教学设计如下:

  1.重视学生的实践操作。

  动手实践是学生学习数学的主要方式之一,它能促进学生对抽象的数学知识的理解。在本节课的教学设计中,注重引导学生先画一画,再搭一搭,着重发展学生的空间观念和推理能力,让学生感知从不同方向观察到的立体图形的形状,并能根据给定的从一个方向观察到的平面图形和小正方体的数量还原立体图形,以及根据给定的从两个方向观察到的平面图形,确定搭成这个立体图形所需要的小正方体的数量范围。

  2.重视小组合作探究的学习方式。

  本节课以游戏的形式引入,每个环节都是以小组合作学习的方式开展的,通过小组成员不断地发现实物与他们所观察到的图形之间的关系,发展学生的空间观念,促进学生的全面发展。

  课前准备

  教师准备PPT课件比赛计分册

  学生准备若干个小正方体

  教学过程

  ⊙创设情境,激趣导入

  师:同学们,你们喜欢搭积木吗?在搭积木的过程中,你发现了什么?

  预设

  生1:用同样数量的积木可以搭出很多种立体图形。

  生2:从不同角度观察立体图形,形状不一样。

  师:今天我们来进行一场搭积木比赛,从中会学到很多知识。(板书课题:搭积木比赛)

  设计意图:从学生喜欢的搭积木游戏导入新课,既调动了学生学习的积极性,又激发了学生的学习热情。

  ⊙合作交流,探究新知

  1.比赛一:画一画。

  课件出示第一项比赛:根据搭成的立体图形,画出从三个方向(上面、正面、左面)看到的形状。

  (1)明确比赛规则。

  观察搭成的立体图形,分别画出从上面、正面、左面看到的形状。

  (2)课件出示教材32页淘气搭成的立体图形,观察这个立体图形,看一看有什么特点。

  ①学生观察,小组内交流、讨论,教师对学习困难的同学进行适当指导。

  ②学生汇报观察到的结果。

  (这个立体图形是由5个小正方体搭成的)

  (3)从上面、正面、左面三个方向观察搭成的立体图形,并画出看到的形状。

  ①学生动手画一画。

  ②各小组展示画出的图形,并说一说你是从哪个方向观察的。

  (4)引导学生将画出的从三个不同方向看到的形状与搭成的立体图形进行比较,看是否符合要求。

  (5)统计各组的得分情况。

  2.比赛二:搭一搭。

  课件出示第二项比赛:根据给定的从两个方向观察到的平面图形,确定搭成这个立体图形所需要的小正方体的数量范围。

  (1)一个立体图形,从正面和左面看到的形状如下图:

  (2)提问:搭一个这样的立体图形,最少需要几个小正方体?最多可以有几个小正方体?

  (3)学生小组合作,先交流,再动手操作。

  (4)各小组展示搭好的立体图形。(鼓励不同的搭法)

  (5)引导学生说一说:你是怎样设计这个立体图形的?用了几个小正方体?

  (6)提问:你们搭出的立体图形各不相同,你们从中发现了什么?

  (7)师小结:根据给定的从两个方向观察到的平面图形不能确定这个立体图形的形状,但能确定搭成这个立体图形所需要的`小正方体的数量范围。

  (8)统计各组的得分情况。

  3.比赛三:看谁搭得多。

  课件出示第三项比赛:根据从上面看到的形状,用6个小正方体搭一个立体图形。

  (1)从上面看到的形状如下图:

  (2)提问:用6个小正方体搭一个从上面看形状如上图的立体图形,你有多少种不同的搭法?

  (3)学生在小组内边交流,边操作。

  (4)各小组展示不同的搭法,看哪个小组搭的方法多。

  (5)说一说自己是怎样设计的。

  (6)师小结:根据给定的从一个方向观察到的平面图形搭立体图形,即使给出的小正方体的数量是固定的,也有很多种不同的搭法。

  (7)统计各组的得分情况。

小学六年级数学教学设计5

  教学内容:课本第50页例2;练一练;《作业本》第22页。

  教学目标:

  1、理解并掌握比的基本性质,知道最简单的整数比,会根据比的基本性质将比化成最简单的整数比。

  2、培养学生自主迁移、自主构建知识的能力。

  教学重点:比的基本性质和化简比

  教学过程:

  一、准备练习:

  1、求下列各比的比值。

  12:201:1:1.5:2.5

  2、在()里填上适当的数。

  ⑴=()()=():()

  ⑵====

  (第1题:分数与除法的关系;第2题:分数的基本性质)

  3、复习比与除法、分数的关系。(完成上堂课的表格)

  二、教学新课:

  1、引入。

  分数基本性质是怎样的?除法的.商不变性质又怎么说?根据分数、除法和比的关系,你能猜出比的基本性质应该是怎样的呢?

  (1)学生试着叙述。

  (2)反馈小结。

  分数基本性质、除法的商不变性质中的都有0除外,为什么?比的基本性质要不要也加上这个条件?应该怎么说才最完整呢?

  2、看书验证自己的猜想。P50页。

  3、什么是最简单的整数比?

  (1)下面哪些是整数比?哪些整数比最简单?为什么?

  6:1012:210.3:0.40.25:1

  3:54:73:4:

  (2)教师小结:

  像3:5、4:7、3:4等这些整数比,比的前项和后项都是整数,而且这两个数是互质数,,我们称这样的比为最简整数比,化成最简整数比简称化简比。

  4、教学例2。化简比。

  (1)应用比的基本性质可以把比化成整数比。

  自学课本P50、51例2、例3)

  (2)小结:

  ①整数比化简的方法是把比的前项和后项同时都除以它们的最大公约数。

  ②分数比化简的方法是先把前、后项同时都乘以分母的最小公倍数。

  (3)试一试。

  三、巩固练习:练一练

  四、小结:

  今天你学会了什么?比和比值的区别怎样?(比值是一个数,可以用分数、小数、整数来表示;而比必须清楚的看出比的前项和后项,只能用比的形式表示。)

  五、《作业本》第22页。

小学六年级数学教学设计6

  学习内容:人教版小学数学教材六年级下册第67页。

  学习目标:

  1.运用所学的圆、比例等知识解决问题。

  2.了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。

  3.通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力。

  4.经历解决问题的基本过程,了解数学与生活的密切关系。

  学习重点:运用所学的比例或与其相关的知识解决自行车中的数学问题。

  学习难点:运用所学的比例或与其相关的知识解决自行车中的数学问题。

  学习准备:课件等。

  学习过程:

  环节预设 教师活动 学生活动 设计意图

  一、情境导入 “你知道哪些自行车的种类?”

  出示各种自行车的图片 学生积极思考、回答问题。 先给出学生一个熟悉的生活场景,便于学生理解。

  二、新知讲授 (一)揭示课题

  1.说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。

  2.自行车里会有数学问题吗?想一想。

  (二)研究普通自行车的速度与内在结构的关系

  1.提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。

  2.分析问题

  (1)学生讨论如何解决问题。

  方案一:直接测量,但是误差较大。

  方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。

  (2)讨论:前齿轮转一圈,后齿轮转几圈?

  前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数

  3.建立数学模型,收集数据并求解。

  (1)蹬一圈车子走的距离=车轮的'周长×(前齿轮的齿数:后齿轮的齿数)

  (2)分组收集所需要的数据,带入上述模式,求出答案。

  4.汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。

  (三)研究变速自行车能组合出多少种速度

  1.提出问题:变速自行车能组合出多少种速度?

  (1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)

  (2)根据这个结构,可以组合出多少种速度?

  2.分析问题,求解,汇报。

  3.蹬同样的圈数,哪种组合使自行车走得最远? 学生讨论交流并回答问题。

  学生通过观察、思考、讨论、合作、解决问题等一系列学习过程,逐步培养自己的合作探索精神,更加善于在生活中进行学习。

  动手操作的过程中,学生会逐渐融入到知识形成的整个过程当中去,培养学生解决实际问题的能力,了解数学与生活的密切关系。

  三、巩固应用 1、已知:前齿轮齿数为:26,后齿轮齿数为:16,车轮直径为:66cm。问:①你能算出蹬一圈,它能走多远?②小红家距离学校大约500米,从家到学校至少要蹬多少圈?

  共两题 学生进行思考、解答。 通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。

  四、课堂小结

  你有什么收获? 学生思考并回答 让学生体验成功的喜悦,进一步拓展学生的思维和创造能力。

小学六年级数学教学设计7

  教学内容:

  课本P10~11例6、例7和试一试、练一练以及练习三的第1-4题。

  教学目标:

  1.引导学生通过操作活动,初步认识体积和容积的意义。

  2.使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

  3.使学生进一步激发学生探究立体图形的兴趣。

  教学重点:

  通过操作活动,初步认识体积和容积的意义。

  教学难点:

  通过操作活动,初步认识体积和容积的意义。

  教学准备:

  课件

  教学过程:

  一、激发兴趣、打入新课

  谈话:同学们生活中的物体有大有小,看,你能比较这这两个物体的大小吗?(出示一个苹果和一个大枣)你是怎样比较的?今天我们一起学习有关物体的大小的知识——体积和容积(揭示课题)。

  二、动手操作、自主探究

  认识体积

  1.出示两个有同样多水的相同玻璃杯,让学生看清两个杯子里水面同样高。

  (1)先在一个杯子里放入一个大枣,让学生说明水面有什么变化。

  提问:水面为什么会上升?(大枣占有了水中一块地方)

  指出:大枣占有一块地方,我们就说大枣占有一定的空间。

  因为大枣占有空间,把水往上挤,所以水面上升了。

  (2)在另一个杯子放入荔枝。

  (3)提问:现在水面有什么变化?说明了什么?

  再比一比,哪个杯子里水面上升得高?为什么这个杯子里的水面会上升得高一些?

  指出:因为荔枝大一些,所以这个杯子里水面上升得高一些,说明这一石块所占的空间大。

  提问 :谁来说一说,哪一个水果所占的空间大,哪一个水果所占的空间小?

  2.出示大小不同三种水果,哪一个占的空间大?如果把它们放在同样的杯中,在倒满水,哪个杯里所占的空间大?

  让学生说出,大的水果所占的空间大,小的`水果所占的空间小。

  指出:从刚才的实验中我们可以看出,物体不仅占有空间,而且占有的空间还有大有小。也就是说,大的物体所占的空间大,小的物体所占的空间小。

  板书:物体所占空间的大小叫做物体的体积。

  3.说能说说生活中两种物体体积的小。(说完整的话)

  认识容积

  出示两个大小不同的长方体纸盒,比较一下哪个体积大一些。(例7)

  (1)学生比较并说明理由。

  指出:书盒能容纳书的体积就是书盒的容积。也就是说容器所能容纳物体的体积,叫做这个容器的容积。

  (2)举例说说生活中的两种容器的容积。

  三、巩固提升

  1.完成练一练

  第1题可以让学生直接判断,然后教师可以操作演示,在让学生说说溢出的水的体积分别相当于哪个物体的体积。

  2、第2题可以让学生先判断,然后再根据容积的含义进行解释。

  3.完成练习五第1题

  让学生说明三维饼干的体积为什么相等。使学生明确:因为它们都是有同样大小的8盒饼干堆成的,所以它们所占的空间大小也就一样。

  4.完成练习五第2题

  5.让学生明白杯子装的多说明容积大,杯子装的少的说明容积小。

  6.第3题可让学生按要求操作,让后同桌交流摆的是否正确。

  7.第4题可以让学生分别说说体积和容积分别指的是什么,有什么不同,再回答问题,并说明理由。

  8.第5题中的三个图形分别表示相应的长度单位、面积单位和体积单位。这是它们的不同点。而1平方厘米是边长1厘米的正方形,1立方厘米是棱长1厘米的正方体,这两个概念都与1厘米有关。这是三个图形的内在联系。

  四、全课小结

  今天这节课我们学习了什么?你的收获大吗?你觉得学好这些知识有什么用吗?

  五、布置作业

小学六年级数学教学设计8

  设计说明

  本课时是在学生学习了比与分数的联系及掌握了简单的分数乘、除法应用题的数量关系的基础上进行教学的。它是“平均分”问题的发展,也是今后学习比例、比例尺等知识的基础。本课时在教学设计上有如下几个特点:

  1、巧妙铺垫。

  在解决按比分配的问题时,一般是先把几个数的比转化成几个数分别占总数的几分之几,再根据分数乘法的意义求出这几个数。所以在复习导入阶段,巧妙设题,引导学生把几个数的比转化成各部分占总数的几分之几,使新知的导入水到渠成。

  2、合作交流。

  在新知的探究阶段,先结合例题引导学生弄清题意,再引导学生联系已有的知识尝试不同的解法,最后给出按比分配的意义,并引导学生总结出按比分配问题的不同解法,使学过的各知识间的联系得到加强。

  3、应用体验。

  在巩固练习阶段,通过引导学生自主解决相关问题,使学生在应用体验中进一步理解比和分数的关系。掌握先把比化成分数,再用分数乘法来解答的方法。

  课前准备

  教师准备

  PPT课件学情检测卡

  教学过程

  ⊙复习导入

  1、列式并解答。

  (1)200kg的是多少千克?200×=50(kg)

  (2)某班有男生18人,女生14人,男生和女生人数的比是多少?(18∶14=9∶7)

  (3)学校体育组买来了三种球,其中篮球5个,足球4个,排球8个。

  ①买来的篮球、足球和排球的比是多少?(5∶4∶8)

  ②篮球的个数占三种球总数的几分之几?

  ③足球的个数占三种球总数的几分之几?

  ④排球的个数占三种球总数的几分之几?

  ⑤如果不知道买来的球的总数,只知道买来的篮球、足球和排球的个数比,你能求出这三种球的个数各占球总数的几分之几吗?(引导学生根据份数思考问题)

  2、引入新课。

  比的应用十分广泛,这节课我们就来学习比在生活中的应用。(板书课题)

  设计意图:跳出学生原有的知识结构,把连比转化成总数的几分之几。分散解决问题的难点,激发学生探究新知的欲望。

  ⊙探究新知

  1、教学教材54页例2。

  (1)课件出示教材54页例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。如果按1∶4的比配制了一瓶500mL的稀释液,其中浓缩液和水的体积分别是多少?

  (2)阅读与理解。

  ①题目中要配制什么?(配制500mL的`稀释液)

  ②是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

  ③“浓缩液和水的体积比是1∶4”是什么意思?(就是说在500mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份,浓缩液的体积占稀释液体积的五分之一,水的体积占稀释液体积的五分之四)

  (3)分析与解答。

  ①讨论:你能求出浓缩液和水的体积各是多少毫升吗?(引导学生小组讨论解法)

  ②交流汇报。(结合学生回答,板书解法)

  思路一先把比化成分数,再用分数乘法来解答。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500×=100(mL)

  水的体积:500×=400(mL)

小学六年级数学教学设计9

  【学习内容】

  人教版小学数学六年级下册第87、88页。

  【学习目标】

  1.巩固常用计量单位的表象。

  2.掌握所学单位间的进率。

  3.能够进行简单的改写。

  【学习重点】:

  能够进行简单的改写。

  【学习难点】:

  能够正确地进行改写。

  【设计特色】

  1.提供协作学习任务单,促进协作学习的`有效性。

  【学习过程】

  环节

  呈现

  学生活动

  学习目标

  问题情境

  1.复习。

  师:“我们学过哪些量?它们各有哪些计量单位?”

  思考、回答。

  巩固常用计量单位的表象。

  独立探究

  前一晚的作业是让学生在家独立分类整理,打算分成哪几类?

  独立思考、整理、分类。

  回忆整理形成知识网络。

  协作学习

  协作学习任务:

  1、每人在小组中汇报自己整理。

  2、记录表:

  成员

  我是这样整理的

  小组成员合作完成。

  通过交流,互相欣赏、取长补短。

  掌握所学单位间的进率。

  应用拓展

  1.

  2.P88练习十六

  总结单位改写的方法。

  在教师引导下独立完成,并及时分享错例。

  能够进行简单的改写。

  【板书设计】

  常见的量

小学六年级数学教学设计10

  设计说明

  本节课的教学以“数学源于生活,寓于生活,用于生活”为指导,在《数学课程标准》理念的指导下,灵活运用教材实施教学。

  1.课堂关注的是数学与生活的密切联系。

  在本节课的教学中,各个环节都紧密联系学生的生活实际,使学生认识到百分数在生产、生活中具有广泛的作用。此外,本节课还安排了学生在实际生活中收集百分数的活动,有利于培养学生的实践能力。如此贴近学生生活的课堂,他们自然积极投入,数学课堂正因为重新回到生活中而显得有活力了。

  2.课堂关注的是学生已有的知识与经验。

  对于六年级的学生来说,他们对生活中的`百分数并不陌生,知道生活中经常有“%”的存在。因此本节课知识的学习是建立在学生完整掌握分数的意义及比的概念的基础之上的,并对百分数已经有了一个初步的认识。教师一定要关注学生已有的知识与经验,因此我打破了原有教材的编排,创造性地使用教材,设计新颖有趣的问题情境,让学生去感知百分数的产生过程,体会学习百分数的必要性,唤醒学生的生活经验,激起学生学习百分数的强烈欲望。

  课前准备

  教师准备 PPT课件

  学生准备 课前收集的生活中有关百分数的信息

  教学过程

  ⊙创设情境,揭示课题

  1.教师谈话引入。

  师:我们的学校正在开展阳光体育活动,你能告诉老师你喜欢哪些运动吗?

  生:跳绳、篮球、排球、足球……

  师:喜欢足球的有多少人?有这么多同学喜欢足球啊!其实老师也特别喜欢足球,我这里有一段足球明星们的精彩集锦,咱们一起欣赏一下。

  师:(播放含有点球的视频)刚才的比赛精彩吗?为什么会有点球?如果你是教练,你打算派你的哪些队员去罚点球呢?

  2.揭示课题。

  师:现在就从足球比赛进入我们本节课的学习。

  板书课题:百分数的认识。

  设计意图:《数学课程标准》指出:数学源于生活,寓于生活,用于生活。在实际的生活情境中体验和理解数学。在本环节中,从学生最喜欢的运动入手,激发学生解决问题的兴趣,让学生产生探究百分数的欲望。

  ⊙探究新知,建构模型

  (一)理解百分数的读写法。

  1.课件出示情境图及表格,学生读要求。

  队员

  罚球数/个

  进球数/个

  淘气

  20

  18

  奇思

  10

  8

  不马虎

  25

  21

  2.现在请各位同学仔细考虑,看一看怎么比较才能把最合适的队员选出来。请大家先独立思考,说出自己的分析过程,再把你的想法和同桌交流。

  (1)引导学生思考:你认为应该选谁去罚点球?说出你的根据。

  (2)学生汇报:要看进球的个数占罚球个数的几分之几。

  ①淘气进球的个数占罚球个数的;

  ②奇思进球的个数占罚球个数的;

  ③不马虎进球的个数占罚球个数的。

  (3)引导学生比较。

  师:这三个分数谁大呢?看出来了吗?有什么办法能够很快地看出他们谁罚球最准?(通分)

  师:请大家将分数化成分母是100的分数进行比较。

  (4)学生独立把三个分数都通分成分母是100的分数,然后汇报。

  淘气:==;

  奇思:==;

  不马虎:==。

  (5)教师小结:不难看出,当我们把这三个分数的分母都化成100的时候很容易比较。现在谁的罚球水平高一些?能看出来吗?(淘气)

小学六年级数学教学设计11

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。教材中选用了许多来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面展开后可以是一个长方形,在操作中经历“圆柱侧面积”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。

  【学生分析】

  学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。

  【教学目标】

  1、掌握圆柱侧面积和表面积的概念。

  2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。

  3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。

  4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。

  【教学重点】掌握圆柱的侧面积和表面积的计算方法。

  【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。

  【教具准备】圆柱体纸盒、多媒体课件。

  【学具准备】圆柱形纸盒。

  【教学过程】

  一、引入新课

  1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

  2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

  3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

  4、这节课我们就一起来研究“圆柱的表面积”这个问题。

  二、探究新知

  1、初步感知

  (1)请同学们观察圆柱,想一想什么是圆柱的表面积。

  总结:圆柱所有面面积的总和就是圆柱的表面积。

  (2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

  (3)圆柱的表面积怎么求?(两个底面积+侧面积)

  (4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

  2、侧面积

  (1)小组合作:

  请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

  (2)学生汇报

  (3)教师总结演示。

  (4)推导圆柱侧面积公式

  圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh

  3、表面积

  (1)总结表面积公式

  怎么求圆柱的表面积?

  圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

  (2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?

  侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2 )

  三、巩固练习

  1、现在我们自己尝试来算一算这两个圆柱的表面积。

  过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

  2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?

  4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?

  5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

  四、总结收获

  同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

  请记住同学们善意的提醒,这节课就上到这!

  五、板书设计

  圆柱的表面积

  侧面积=底面周长×高

  圆柱表面积= S侧=C×h=2πrh S表=2πrh+2πr2

  底面积×2 =2πr2

  ”的探索过程,体会圆柱侧面展开图的长和宽与圆柱的有关量之间的关系,获得求“圆柱侧面积”的方法。

  【学生分析】

  学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。

  【教学目标】

  1、掌握圆柱侧面积和表面积的概念。

  2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。

  3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。

  4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。

  【教学重点】掌握圆柱的侧面积和表面积的计算方法。

  【教学难点】将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积的计算公式。

  【教具准备】圆柱体纸盒、多媒体课件。

  【学具准备】圆柱形纸盒。

  【教学过程】

  一、引入新课

  1、前面我们已经认识了圆柱体,谁来说一下你对它有哪些了解?

  2、不错,今天我们来继续研究圆柱,出示圆柱,观察大屏幕,从图中你了解到哪些数学信息?(圆柱的底面半径是4厘米,高是10厘米)

  3、现在我们如果来做一个这样的盒子,你会想到什么数学问题?

  4、这节课我们就一起来研究“圆柱的`表面积”这个问题。

  二、探究新知

  1、初步感知

  (1)请同学们观察圆柱,想一想什么是圆柱的表面积。

  总结:圆柱所有面面积的总和就是圆柱的表面积。

  (2)动手摸一摸,感受表面积。圆柱表面积包含哪几个部分?(两个底面面积+侧面面积)

  (3)圆柱的表面积怎么求?(两个底面积+侧面积)

  (4)圆柱的底面积很容易求出,但侧面是一个曲面,它的面积怎么求?你有什么想法?想象一下,圆柱的侧面展开后是一个怎么样的图形?你有什么想法。

  2、侧面积

  (1)小组合作:

  请各个小组沿高把它的侧面展开,研究一下这个问题,验证你的猜想。

  (2)学生汇报

  (3)教师总结演示。

  (4)推导圆柱侧面积公式

  圆柱的侧面积=底面周长×圆柱的高,用字母表示圆柱的侧面积公式也可以写成:S侧=C×h,如果已知底面半径为r,圆柱的高为h,侧面积公式变形为:S侧=2πrh

  3、表面积

  (1)总结表面积公式

  怎么求圆柱的表面积?

  圆柱的表面积=上底面积+下底面积+侧面积=两个底面的面积+侧面积。

  (2)共同解决课前提出的问题:要制作这个盒子至少需要多少平分米的包装纸?

  侧面积:2×3.14×10×30=1884(cm2),底面积:102×3.14=314(cm2),表面积:314×2+1884=2512(cm2 )

  三、巩固练习

  1、现在我们自己尝试来算一算这两个圆柱的表面积。

  过渡语:同学们在生活中我们经常会遇到许多有关圆柱表面积的问题,请同学们看屏幕,要解决下列问题,需要求圆柱体哪几部分的面积。

  2、设计一个无盖的圆柱形铁皮水桶,底面直径为4分米,高为5分米,至少需要多大面积的铁皮?

  4、一台压路机的滚筒宽1.2米,直径为0.8米。如果它滚动10周,压路的面积是多少平方米?

  5、如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?

  四、总结收获

  同学们我们来回顾一下这节课你有那些收获?你有什么想提醒大家注意的吗?

  请记住同学们善意的提醒,这节课就上到这!

  五、板书设计

  圆柱的表面积

  侧面积=底面周长×高

  圆柱表面积= S侧=C×h=2πrh S表=2πrh+2πr2

  底面积×2 =2πr2

小学六年级数学教学设计12

  教学内容:

  义务教育课程标准实验教科书六年制小学五年级下册P93-94例1-例3及P94练一练、练习十七第1、2题

  教学目标:

  1、让学生在观察、操作等活动中感受并发现圆的有关特征,知道圆的各部分名称,发现同一圆内半径、直径的特征及关系,学会用圆规画圆。

  2、培养学生的观察、分析、抽象、概括等思维能力和初步的空间观念。

  3、进一步提高学生与他人合作交流的能力,激发学生学习的热情,培养自主意识,增强学好数学的信心

  4、使学生初步学会用数学知识解释、解决生活中的实际问题,进一步体现数学的应用价值。

  教学重点:

  1、学会用圆规画圆。

  2、在观察、操作等活动中感受并发现圆的有关特征。

  教学难点:

  引导学生归纳圆的特征。

  教具准备:

  自制多媒体课件、圆规、直尺。

  学具准备:

  1个圆形物体、圆规、白纸、直尺、图钉、线、2个大小不同的圆形纸片。

  教学过程:

  一、创设情景,初步感知圆的特征

  1、找一找(多媒体出示平面图形)

  师:同学们,这些平面图形大家还认识吗?在这些平面图形中,有一个图形与众不同,你能把它找出来吗?为什么?(学生说出弯曲的后多媒体演示)

  2、看一看

  师:古希腊有一位数学家曾经说过,在一切平面图形中,圆是最美的。下面请你欣赏。(多媒体出示教材97页的你知道吗图片:自然现象、工艺品和建筑物、运动现象、生活用品)

  2、 说一说

  美不美啊?圆在我们的生活中随处可见,请你说说哪些地方还能看到圆。(学生举例)今天这一节课我们一起来进一步的认识圆(板书课题)

  二、实践操作,探索圆的特征

  1、画圆:同学们,圆这样美,想不想把它画下来?

  师:请你借助老师提供的工具画一个圆。(小组合作)

  反馈:你是怎样画的?(学生回答后多媒体随即动画演示)。

  (1)借助圆形实物画:你是这样画的吗?还有不同的画法吗?

  (2)借助图钉和线段画:你是怎样画的?

  (3)借助圆规画:你是怎样画的?

  师:同学们,刚才我们用不同的方法画了圆,但是通常我们会借助圆规来画圆。请拿出圆规。师简单介绍:圆规有2只脚,一只脚是针尖,另一只脚是用来画圆的笔,两脚可以随意叉开。那怎样用圆规画圆呢?谁能说一说?(然后老师边示范边讲解)

  (4)请你用圆规画一个圆

  2、体验:在画圆的过程中,你觉得圆是怎样的一个平面图形?

  3、认识圆心、半径、直径

  (1)结合圆规画的圆(屏幕),师介绍圆心、半径、直径的概念。并分别用字母表示。

  半径有什么特点?直径呢?

  (2)学生在自己的圆上画一条半径和直径,并分别用字母表示圆心、半径、直径。

  看一看、比一比:圆规两脚间的距离和半径的长度(同样长)

  (3)画一个半径是2厘米的圆(圆规两脚间的距离是多少)

  师:刚才我们认识了圆心、半径、直径。下面我们一起来研究圆的特征。

  4、探索圆的特征

  (1)小组合作探索

  出示例3:在圆形小纸片上画一画、量一量、比一比、折一折,思考下列问题。

  在同一个圆里可以画多少条半径,多少条直径?

  在同一个圆里,半径的长度都相等吗?直径呢?

  同一个圆的半径和直径有什么关系?

  圆是轴对称图形吗?它有几条对称轴?

  (2)交流

  (3)电脑演示,加深理解。 (多媒体将学生验证的圆的特征运用了旋转、重合等手段,进行动态演示)这些都是圆的特征。多媒体出示::所有的直径都相等,所有的半径都相等,d=2r,R=d/2)

  通过验证,你们发现的这些圆的特征正确吗?

  质疑:那老师的圆的半径和你的'圆的半径相等吗?(强调:在同一个圆内)

  (4)学生概括,总结特征。谁能把圆的特征用自己的语言来归纳概括一下。

  三、巩固练习(多媒体出示)

  1、练一练第1题(指名说一说,说出理由)

  多媒体出示

  2、练习十七第1题:多媒体出示,学生口答

  3、判断题(指名说一说,说出理由)

  (1)圆的直径是半径的2倍

  (2)圆有无数条半径

  (3)通过圆心的线段是直径

  (4)画直径4厘米的圆,圆规两脚间的距离是4厘米

  (5)半径2厘米的圆比直径3厘米的圆小。

  4、练习十七第2题

  四、实际应用

  1、体育老师要画一个半径是3米的圆,怎么办?(商量商量,帮老师出出点子)学生交流后看动画演示,说明和圆规画圆的道理是一样的。(固定点就是圆心,绳子长就是半径)

  2、师:同学们,圆不仅给我们的生活带来美,还给我们的生活带来方便,所以生活中的很多东西都设计成了圆形,比如:车轮为什么要设计成圆形,车轴应装在哪里?(学生讨论)

  (多媒体播放车轮是圆形的行进动画)

  附板书:

  圆的认识

  画圆:两脚叉开、针尖固定、旋转成圆

  (圆形图)

  在同一个圆里,半径的长度都相等,直径的长度都相等。直径的长度等于半径的2倍。

小学六年级数学教学设计13

  教学内容:

  新课标人教版六年级上册第99~100页。

  教学目标:

  1、知识技能目标:理解本金、利息和利率的含义,掌握利息的计算方法,会利用利息的计算公式进行一些有关利息的简单计算。

  2、情感性目标:在合作与交流的过程中获得良好的情感体验及口头表达能力,感受到生活中处处有数学。

  3、实践性目标:学生在调查实践中了解储蓄的意义、种类,培养学生搜集处理信息的能力。

  4、体验性目标:让学生在解决问题的过程中,进一步体验数学与生活的联系,增强数学意识,发展数学思维。

  (设计意图:关注学生发展,整合教学目标,新《课程标准》明确指出:数学教育要从以获取知识为首要目标转变为首先关注人的发展。这是对长期以来以知识为本位教育目标的重要改革,也是为学生终身学习和可持续发展奠定基础,更重要的是学生在今后获取高质量生存条件的有力保证。所以,本节课根据教材特征结合学生的生活背景,按照关注学生发展理念的认识,确立了知识技能目标、情感性目标、实践性目标和体验性目标。努力使学生在发展性领域和知识性领域获得发展、构建自我。对于本课的设计,本着新课标的基本理念,“人人都能获得良好的数学教育”,让学生通过对不同存款方式的操作,体验到货币的升值,也感受到不同的存款方式所带来的不同收益,更重要的是让学生感受数学知识服务于生活的价值,从小培养科学理财的意识。)

  教学重点:

  掌握利息的计算方法。

  教学难点:

  税后利息的计算。

  课前调查:

  银行储蓄凭证。

  教具准备:

  课前搜集的有关利息的信息、多媒体课件、银行存款单、计算器、有关利率表格。

  教学过程:

  (设计意图:遵循《数学课程标准》的要求,从学生的认识发展水平和已有的知识经验出发,逐步构建起关于外界的知识,从而使自身知识结构将得到发展。为此,本节课的设计根据新课标精神:“重视从学生的生活经验和已有的知识中学习数学和理解数学,教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值”。数学只有与学生生活相联系才能显得真实和精彩。本着这样的理念,所以在课堂设计中利求从学生的实际出发,在课堂中充分让学生“做主”,通过学生积极参与数学活动、独立思考、合作交流、自主地发现掌握本金、利息和利率含义,体会在银行存款时利息的计算方式,从而激发学生学习数学的积极性和学好数学、用好数学的自信心。因此在教学中我遵照以“以学生为本”的思想,共分为四个教学层次,

  一、创设情境,生成问题

  二、探索交流,解决问题,

  三、巩固应用,内化提高

  四、回顾整理,反思提升。)

  课前自学

  1、预习课本P99~100

  2、课前让学生分组或者自由结合到社会上进行调查、搜集有关储蓄的信息,把调查的结果、遇到的问题或感受记录下来。

  3、向家长或银行工作人员了解课本上的相关内容。如储蓄的种类,银行存款的年利率、如何填写存款凭条等。

  (设计意图:数学知识来源于生活,应用于生活。在学习新知前,先让学生预习课本。增强学生的感性认识,为帮助学生确实学好这部分知识打下基础。让学生分组进行有关储蓄知识的调查,组织学生进行有关的实践活动,培养了学生搜集信息的意识和实际调查的能力,分组调查中又培养了学生的合作精神和能力)

  一、创设情境生成问题

  1、开一个关于利率的发布会。

  师:我们开一个关于利率的发布会。在调查储蓄的过程中,你搜集到哪些相关的知识?学生分组汇报调查结果,开放的问题情景下,根据每组学生的差异,预计可能出现下列情况:(1)有关储蓄的一般知识,如储蓄的方式;(2)有关储蓄的相关概念,如本金、利息、利率、税后利息税的知识;(3)有关利息的计算方法,如有的小组利率的含义推导出利息的计算方法;(4)有关调查中遇到的困难、解决的方法和自己的感受。

  根据每组交流的情况给予相应的评价,并和学生共同整理储蓄的相关知识,形成知识体系。

  (设计意图:情境的创设,不仅充分调动了学生的学习积极性,而且为学生提供了从事数学活动的机会。学生通过课前的调查充分感知储蓄的益处,在不知不觉中学到了知识。以谈话方式导入,为学生创设真实的生活情境,不仅让学生感觉到亲切,而且从课的开始就让学生感受到数学与生活的密切联系,起到了开动思维的作用,使学生乐于参与数学活动。)

  二、探索交流解决问题

  1、感知利息。

  师:近年来,我们沂南县始终坚持富民优先的发展思路,以发展民营经济作为经济发展的主体工程,收到了显著成效。很多人家里都有了暂时不用的钱,你知道他们是怎样处理这些钱的吗?

  生:存入银行......

  师:人们常常把暂时不用的钱存入银行储蓄起来。那储蓄有什么好处呢?

  生:放在银行比较安全;可以得到利息。

  师:取款时,银行多支付的钱叫做利息。(板书:利息)

  小结:人们把钱存入到银行,国家可以把这部分暂时不用的钱通过多种方式投入到现代建议中去,这样可以支援国家建设,对国家有利,也使的个人用钱更加安全和有计划,还有利息,也可增加一些收入。我们可以这样概括:储蓄利国利民。

  学生对于国家如何处理人民存入银行的钱,还有银行付给储户利息会不会亏本这些问题,搞不清楚。教师在这里向学生作一些解释是必要的,也是及时的。

  (设计意图:根据学生的生活经验和要求,为了培养学生的各种能力,尝试大胆地开放教学过程。让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养了学生信息的交流和处理能力。)

  2、存款的方式。

  师:根据国家经济的发展变化,银行存款的利率也在变化。谈谈你所知道的储蓄有哪几种,并举例说明,然后教师作适当的补充。有时会有所调整,而且,根据存款是定期还是活期,定期时间的长短,利息也是不一样的。

  出示存款凭证条,并让学生说说每一栏表示什么意思,“客户填写”一栏该如何填写,教师根据学生的回答作适当补充。

  我们把钱存入银行,银行给我们一个什么凭证,证明你把钱存入了银行呢?

  这些存单不仅能证明了我们把钱存入银行,还可以自由存款和取款。

  这是老师的一张存款单(课件出示存款单,钱数:1000元、时间:一年、方式:定期),你能从这张存单上得到哪些信息,你是如何理解这些信息的?

  学生一般都没有进行过实际的储蓄,多数学生都没有见过存单,所以这里老师把自己的存单展示给学生看,加深学生的感性认识。

  学生观察讨论。

  我们先来交流一下你能理解的信息。

  生:我知道老师是在中国人民银行存的款。

  师:你还知道有哪些银行吗?(建设银行,工商银行,交通银行等)

  生:我还知道老师存款的方式是定期存款。

  什么是定期存款的存款方式?那你知道存款的其他方式吗?

  生:整存整取,零存整取,定活两便、活期存款等

  生:我知道老师存的是一千元人民币。

  师:银行还办理外币储蓄。

  (设计意图:传统的教学过程将学生禁锢在课堂上,阻碍了学生能力的形成和发展。联系实际增加学生的感性认识,教材中还给出一张银行用的存款凭条和利息的计算公式,让学生知道在实际生产生活中的简单应用及简单的计算。这样在已有的生活经验的基础上出示一张真实的存款单,给学生一种真实的感觉,从而让学生更加体验到数学的价值。)

  3、认识本金、利息、利率;明白利息的计算方法。

  通过课前的自学,你知道这一千元就叫……?对,我们把存入银行的钱叫做本金。

  生:我还看到利率是百分之二点二五。

  你知道什么叫利率吗?

  利息/本金=利率(老师板书)

  师:同学们手中都有一张利率表,大家看看。同桌之间说说你看到了什么?

  关于利率,你们还知道什么?

  ………

  师:同学们了解的还真不少,你们能帮老师算算到期后老师可以得到多少利息?该如何计算呢?

  生:“利息/本金=利率”。我还知道:利息=本金×利率。

  师:既然大家已经知道了怎么样计算利息了,大家就来帮助老师计算一下,一年后我能得到多少利息?

  师:如果我要存定期二年能得到多少利息,该如何计算?引起学生的知识需求,产生探究欲望。

  学生可能出现下面三个算式:

  1)20xx×2.25%×22)20xx×2.70%×23)20xx×2.70%比较三个算式:

  1)2.25%是一年的年利率,2.70%是定期二年的年利率

  2)让学生说说自己的看法。

  生1:定期二年得到的利息等于本金乘二年期的利率。

  生2:利率是“年”利率,利息的多少还与时间的长短有关,应该再乘时间。

  师把公式填写完整:利息=本金×利率×时间(板书:×时间)

  小结:存款选择的时间不同,利率也不同。计算时一定要选择与存款时间相对应的利率。

  (设计意图:完全放手让学生通过自主探究、合作交流的方式,完成新知的学习。这样为学生创设了思维的空间,探究的空间,交流的空间,注重了让学生经历知识的产生过程,即培养了学生的自学能力,又培养了学生的合作意识,即学会倾听又学会表达。)

  4、学习利息税知识:

  师:大家都算出了我应得的利息,但实际上我并不能得到你们算出的利息,你们知道为什么吗?

  教师课件出示,国家规定:存款的利息要按20%的税率纳税。哪位同学能解释一下?

  生:要扣除利息所得税,要扣除20%的利息所得税。

  师:那老师到期后能得到多少税后利息呢?

  学生计算后小组交流,生列式计算,允许用计算器。

  然后归纳公式

  税后利息=本金×利率×时间×(1-20%)(板书)

  教师及时向学生进行要长大以后要做一个依法纳税的好公民。关于税后利息的计算最好还是建议学生用分步列式计算,先求出税前利息,再求出应纳税额,最后再求税后利息,这样有利于学困生掌握,而且还利于学生弄清每步求的是什么,同时在遇到求应纳税额时,学生才不会混淆。

  小结:在计算时,要看清求的是利息还是税后利息,再灵活计算。

  (设计意图:在引导学生探究学习的过程中,层层分析含义、比较数量关系,从而弄清“利息”的初步知识,知道“本金、利息、时间、利率”的关系,巧妙突破教学难点。让学生运用所学知识解决实际问题,在解决实际问题的同时,提高学生灵活运用知识的`能力,同是针对利息税,进行公民要依法纳税的教育,提高学生的纳税意识。)

  (设计意图:学生各种能力的形成和发展是我们教学的首要任务。学生在自主探索和合作交流中,对知识的理解与把握非常深刻。为了使学生对本课时的教学内容得到巩固和加深,提高综合运用所学数学知识解决简单的实际问题的能力,我在教法上注重课堂教学的灵活性、科学性。联系实际增强学生的感性认识,抓住各知识的细节性、过渡性、完整性进行教学,同时、采用自主探究、观察、对比、独立思考、小组合作交流、动手操作、汇报演示等学习策略激发学习动机,促使学生肯学、会学、善学,让学生在动手做一做、说一说的学习过程中培养学生的概括能力,把握并突破重、难点,获取新知。引导学生积极参与学习过程,促进学生数学概念的形成和数学结论的获取。教学中还注重沟通师生的情感因素,面向全体学生,充分调动学生的积极性,使所有学生都能在数学学习中增强克服困难的勇气和毅力,提高学习数学的兴趣。)

  三、巩固应用内化提高

  1、基本应用:

  (1)、例题:王奶奶要存1000元请你帮助王奶奶算一算存一年后可以取回多少钱?(整存整取一年的利率是2.25%)。

  在弄清以上这些相关概念之后,学生尝试解答例题。

  在学生独立审题解答的基础上订正。

  板书:

  方法一方法二

  1000×2.25%×1=22.50(元)1000×2.25%×1=22.50(元)22.50×20%=4.50(元)1000+22.50×(1-20%)

  1000+22.50-4.50=1018(元)=1018(元)

  答:一年后王奶奶可以取回1018元。

  师:我们存入银行所得的利息要缴纳利息税,利息税是利息的20%。王奶奶存1000元1年,到期利息22.50元,应缴纳利息税22.50×20%=4.50元,这样她存入1000元,到期后她可以实际得到本金和税后利息一共是1018元。

  (2)、学生完成第100页的“做一做”。下面是张叔叔到银行存款时填写的存款凭证。到期时张叔叔可以取回多少钱?

  四人小组互相检查对方的计算是否正确。选一到二位同学(实物投影交流)

  这里既是一种实践应用,也是对学生课前作业的照应,体现了教学设计的完整性,又使学生通过解答,达到了灵活运用知识的能力。

  (3)、102页第

  6、7题,学生尝试计算后,交流。完成练习时看清题目认真审题,有的要缴纳利息税,有的则不必缴纳利息税,像国债、教育储蓄就不缴利息税。

  2、综合应用

  (1)、王大爷在20xx年1月1日把10000元定期存款二年,可是在20xx年8月1日,急需用钱,你帮王大爷出出主意,该怎么办呢?

  让学生明白,如果定期存款中途取时,只能按活期算

  生:可以先向别人借钱,等存款到期后,再归还借款。

  生:可以用存折作抵压,从银行贷款,然后等存款到期后,再归还借款。

  这里是本课的高潮所在,学生灵活运用自己所学知识或已有的生活经验解决实际问题。

  (2)、课后实践、体验储蓄过程

  师:请同学们课后把平时积攒的零用钱存入银行,在储蓄的过程中如果遇到问题,你能想办法解决吗?把不懂的问题记下来,存入问题银行,我们下节课继续交流讨论。

  (设计理念:针对学生差异,实施多元评价。我精心设计练习,让学生用合作学习的方式运用所学知识解决实际问题,提高学生的实际运用能力。第二个层次的练习设计为实践延伸,对学生提出具有挑战性的要求,让学生获得实践体验,感受到所学的知识能运用于生活。体会到在实际生活中要根据个人的不同需求,选择适合自己的款方式,体验到不同的存款方式带来的不同益处。课后要求学生去亲自实践,体验储蓄的过程,培养了学生良好的生活习惯和利用知识解决问题的能力。)

  四、回顾整理反思提升

  通过本课的学习,你有什么收获?

  (设计理念:《新课程标准》评价体系,不仅要求教师要关注学生在语文和数学逻辑方面的发展,而且要发现和发展学生多方面的潜能,了解学生发展中的需求,帮助学生认识自我,建立自信,促进学生在已有的水平上发展,发挥评价的教育功能。本节课在教学过程中,除了针对学生的个性差异采取各种教学活动外,还给学生提供各种展示自己的机会和空间。在课内进行交流时,教师还能根据学生的不同回答,给出知识性、行为逻辑性、实践性、合作性等方面的多元评价方式,使不同的学生认识了自我,有利于他们的再发展。)

  板书设计

  利率

  存入银行的钱叫做本金。

  取款时银行多支付的钱叫做利息。

  利息与本金的比值叫做利率。

  (设计意图:板书设计为学生提供直观性的顺思维与逆思维两种形式,使学生一目了然,并能依据板书归纳和小结本课时所学的内容。)

小学六年级数学教学设计14

  数学是义务教育阶段的必修课。通过数学课程的学习,学生获得数学基本知识和技能,逐渐形成正确的世界观,人生观和价值观。下面是北师大版小学六年级数学教学计划 ,欢迎参考!

  一、基本情况分析:

  本年级学生有学生47人,其中男生有25人,女生有22人。从总体上看,学生数学能力相对欠缺,数学基础不够扎实,学校热情一般,大多数学生上课能专心听讲,认真思考问题,积极主动地发言,提出不同的看法,能按时完成作业。反应比较慢的也不少,一道非常简单的计算题,你给他讲一遍不会,再讲一遍还是不会,继续讲一遍仍然不会。

  二、教学内容

  本册教学内容分为五大板快:(一)、数与运算。1.第二单元百分数的应用。2.第四单元比的认识。(二)、空间与图形。1.第一单元圆。2.第三单元图形的变换。3.第六单元观察物体。(三)、统计与概率。第五单元统计。(四)综合应用:数学与体育、生活中的数。(五)整理与复习。

  三、教学目的和要求:

  1.通过观察、操作等活动认识圆及圆的对称性,认识到同一个圆中半径、直径、半径和直径的关系,体会圆的本质特征及圆心和半径的作用,会用圆规画圆。结合具体情境,通过动手实验、拼摆操作等实践活动,探索并掌握圆的周长和面积的计算方法,体会化曲为直的思想。结合欣赏与绘制图案的过程,体会圆在图案设计中的应用,能用圆规设计简单的图案,感受图案的美,发展想象力和创造力。

  2. 在具体情境中理解增加百分之几或减少百分之几的意义,加深对百分数意义的理解。能利用百分数的有关知识或运用方程解决一些实际问题,提高解决实际问题的能力,感受百分数与日常生活的密切联系。

  3.经历运用平移、旋转或作轴对称图形进行图案设计的过程,能灵活运用平移、旋转和轴对称在方格纸上设计图案;结合欣赏和设计美丽的图案,感受图形世界的神奇。

  4.经历从具体情境中抽象出比的过程,理解比的意义及其与除法、分数的关系。在实际情境中,体会化简比的必要性,会运用商不变的.性质和分数的基本性质化简比。能运用比的意义,解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力,感受比在生活中的广泛应用。

  5.认识复式条形统计图和复式折线统计图,感受复式条形统计图和折线统计图的特点。能根据需要选择复式条形统计图、复式折线统计图有效地表示数据。

  6.学生能正确辨认从不同方向(正面、侧面、上面)观察到的立体图形(5个小正方体组合)的形状,并画出草图。感受观察范围随观察点、观察角度的变化而改变,能利用所学的知识解释生活中的一些现象。

  四、教学措施:

  1.鼓励学生在现实情境中体验和理解数学

  2.鼓励学生独立思考,引导学生自主探索、合作交流

  3.重视培养学生的应用意识及初步的提出问题和解决问题的能力。

  4.创造性地使用教材。

  五、教学课时安排(按单元顺序)

  一单元圆: 17课时。

  二单元百分数的应用:16课时

  三单元图形的变化: 5课时

  整理与复习(一): 5课时

  数学与体育: 3课时

  四单元比的认识: 13课时

  五单元统计: 6课时

  整理与复习(二): 3课时

  生活中的数: 2课时

  六单元观察物体: 5课时

  看图找关系: 2课时

  总复习: 10课时

  机动时间: 3课时

小学六年级数学教学设计15

  素质教育目标

  (一)知识教学点

  1.使学生理解掌握比例的意义和基本性质。

  2.认识比例的各部分的名称。

  (二)能力训练点

  1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

  2.培养学生的观察能力、判断能力。

  (三)德育渗透点

  对学生进一步渗透辩证唯物主义观点的启蒙教育。

  教学重点:

  比例的意义和基本性质。

  教学难点:

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

  教具学具准备:

  小黑板、投影片、投影仪。

  教学步骤

  一、铺垫孕伏

  教师出示复习题,回忆有关比的知识。

  1.什么叫做比?

  2.什么叫做比值?

  3.求下面各比的比值:

  4.上面哪些比的比值相等?

  学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)

  二、探究新知

  1.比例的意义。

  出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是______;

  第二次所行驶的路程和时间的'比是______。

  这两个比的比值各是多少?它们有什么关系?

  (1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式

  (2)由教师告诉学生:象4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)

  师问:什么叫做比例:组成比例的关键是什么?

  生答:表示两个比相等的式子叫做比例。(板书)

  引导学生议论、交流后板书:表示两个比相等的式子叫做比例。(在“两个比相等”下边划“”。)

  (3)做一做

  下面哪组中的两个比可以组成比例?把组成的比例写出来。

  ①6∶10和9∶15

  ②20∶5和1∶4

  第①题由教师引导学生完成,思路如下:

  所以:6∶10=9∶15

  其余各题分组讨论后由学生独立完成。

  (4)填空

  ①如果两个比的比值相等,那么这两个比就()比例。

  ②一个比例,等号左边的比和等号右边的比一定是()的。

  2.比例的基本性质。

  (1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边叙述边板书如下)

  (2)让学生看下面这些比例,说出它的外项和内项是多少?

  4.5∶2.7=10∶6

  6∶10=9∶15

  (3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明。(师边板书如下)

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  (4)由学生自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。

  (5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)

  (板书课题:加上“和基本性质”,使课题完整。)

  (6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?

  指名回答后,师板书:

  (7)做一做

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

  6∶3和8∶50.2∶2.5和4∶50

  3.阅读课本第9、10页的内容并填空。

  三、巩固发展

  1.说一说比和比例有什么区别。

  讨论后指名说明:

  比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。

  2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

  3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  (1)6∶9和9∶12

  (2)1.4∶2和7∶10

  4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)

  2、3、4和6

  四、全课小结

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。

  五、布置作业练习一第3题。

【小学六年级数学教学设计】相关文章:

小学数学教学设计07-09

小学数学教学设计07-02

小学数学优秀教学设计04-11

小学数学教学设计(必备)05-30

小学数学圆教学设计03-13

小学数学教学设计经典【15篇】10-21

小学数学教学设计15篇12-06

小学数学教学设计(15篇)06-22

数学教学设计12-09