解决问题说课稿

时间:2024-06-08 10:16:30 说课稿 我要投稿
  • 相关推荐

解决问题说课稿

  作为一名老师,通常需要用到说课稿来辅助教学,借助说课稿可以有效提高教学效率。我们该怎么去写说课稿呢?下面是小编精心整理的解决问题说课稿,欢迎阅读与收藏。

解决问题说课稿

解决问题说课稿1

各位领导、老师:

  大家好。我说课的内容人教版《义务教育课程标准实验教科书·数学》二年级下册第54~55页的内容。下面我就从教材、教法、学法、教学程序几个方面进行阐述。

  一、说教材

  1.教材分析。

  《用除法解决问题》一节,即教学如何用除法解决“求一个数是另一个数的几倍是多少”的实际问题,教材安排在教学用7~9的乘法口诀求商之后,我想,编者之所以这样安排,匠心不仅在于加深学生对除法含义的理解,有更多机会练习除法计算,更重要的是可以使学生了解除法计算与实际生活的联系,培养学生应用数学的意识,发展解决问题的能力。

  为了让学生更好地理解两个数量之间的倍数关系,解决“求一个数是另一个数的几倍是多少”的实际问题,教材还遵循了由浅入深的编排原则。其逻辑顺序如下:

  例2,通过摆飞机模型的操作活动,让学生理解“一个数是另一个数的几倍”的含义。

  例3,引导学生根据倍的概念和除法的含义,分析推理,探究出“求一个数是另一个数的几倍”的一般解法。

  这样的例题编排,为学生展示了一幅由浅入深,由简单到复杂,由直观操作到分析推理的逻辑画面。它遵循了学生的认知规律,为引导学生在解决问题的过程中进行有条理的思考,设计了拾级而上的台阶。

  2.教具准备:课件、小棒等。

  3.教学目标。

  本课教学目标的确定力图体现“发展为本”的理念,不仅注重双基的落实,还要注重学生的学习过程,因此本课教学目标从知识、能力、情感三方面加以考虑有以下三点。

  (1)通过实践活动使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的相互联系。

  (2)使学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。

  (3)培养学生的合作意识,提高学生的探究能力。

  4.教学重难点。

  重点:使学生经历从实际问题中抽象出“一个数是另一个数的几倍”的数量关系的过程,会用乘法口诀求商的技能解决实际问题。

  难点:应用分析推理将“一个数是另一个数的几倍是多少”的数量关系转化为“一个数里面含有几个另一个数的除法含义”。

  二、说教法

  根据以上分析,教学时,我采取了“自主探究的教学方法”。通过电化教学、实物操作、合作交流等教学手段,创设一定的学习情境与和谐民主的学习氛围,让学生经历将一个具体问题抽象为数学问题的教学过程时,在学生解决“求一个数是另一个数的几倍是多少”的实际问题中,经历运用除法含义确定算法的过程。采取多种教学手段使学生初步懂得应如何思考问题,如何用数学方法来处理有关的信息,合理地解决问题。

  三、说学法

  1、通过操作活动,让学生体会生活中的许多数量之间都存在着倍数关系。

  2.运用独立思考和合作交流相结合的学习方式,引导学生用简洁的语言有条理地表达自己的思考过程。

  四、说教学过程

  为了有效地完成教学目标,突出重点,突破难点,体现新课标,我设计了以下4个环节:

  (一)、创设情境、引入新知

  (二)、探索交流,解决问题

  (三)、巩固应用、内化提高

  (四)、回顾整理,反思提升

  本课教学充分依靠教材的编排思路,挖掘教材的编排特点,下面我就以上四个环节说一说。

  第一环节:创设情境,引入新知。

  以本班学生参加课外活动的人数为例,我设计了三道求“一个数的几倍是多少”的复习题,如第1题:二年级三班学习舞蹈的有3人,学习绘画的人数是学习舞蹈人数的2倍,学习绘画的有多少人?学生说出答案后,讲一讲思考过程。这时,教师请学习绘画的6位同学向大家挥挥手,再汇报一下自己的学习成绩,教师向取得优异成绩的同学表示祝贺。

  复习环节的设计意图有三,一是唤起学生对已有“倍”的知识的回忆,为学习新知做好知识和心理上的准备,二是复习时密切联系学生的生活实际,师生情感交融,使学生产生愉悦的学习心情。三是为学生创设一种用数学眼光去观察分析日常生活问题的情境,激发了学生的学习欲望。

  第二环节:探索交流,解决问题。

  在课的新授部分,我结合例2的电化教学,设计了一个让学生参加的用小棒摆飞机的游戏活动。主要过程是这样的:先以动画形式出示第54页例2主题图(三位同学在用小棒摆飞机)并演示5根小棒摆一架飞机的过程。这时老师问:“你们想参加这个游戏活动吗?”引导学生亲自参加到动手摆飞机的活动中来。学生在音乐声中摆完飞机以后,汇报结果,如“我用5根小棒摆了一架飞机”“我用15根小棒摆了3架飞机”等等。在此基础上教师又适时提出问题“根据你摆的'飞机,谁能提个问题让大家猜一猜?”学生兴趣盎然,提出了诸如“我用10根小棒摆几架飞机”的问题,由此引出“求一个数里含有几个另一个数的除法含义”,为学习“一个数是另一个数的几倍”奠定了基础。在学生动手操作、动眼观察的基础上,课件出示例题中小强提出的问题: “我摆了3架飞机,我用的小棒根数是小红的几倍?”怎么解决这个问题呢?我请学生在小组里讨论,在动脑思考、充分探究中找到了“求一个数是另一个数的几倍是多少”的解题思路,即“求一个数是另一个数的几倍”的含义,就是“求一个数里含有几个另一个数”,用除法计算,15÷5=3。在这样的教学活动中,学生经历了解决问题的过程,学会了用数学的思维方式去观察、分析实际问题,学会了从数学的角度提出问题、理解问题、解决问题,培养了综合运用所学知识解决实际问题的能力。

  由于倍概念的复习及例2的学习,学生已经理解了用除法计算解决“求一个数是另一个数的几倍”问题的解题思路,因此在这一环节中,我完全放手让学生自己提出问题,解决问题。课件首先出示例3情境图:35人唱歌、7人跳舞、5人看节目,请学生根据画面提出用除法计算的问题,如“唱歌的是跳舞的几倍?”“唱歌的是看节目的几倍?”等等,根据所提问题,小组讨论解决方法,学生独立列式解答后,讲解题思路,这样不仅使学生更牢固地掌握知识,还能体会合作交流给自己带来的收获。

  此环节的教学设计,摒弃了传统应用题教学过程中分析数量关系,寻找解题方法的套路,把应用题和运算教学结合起来,重点引导学生解决问题的过程。因为学生学习的目的不是为了快速获得正确答案,而是着重探索和研究的活动,在解决问题的过程中寻求创造性的问题解决方式。

  第三环节:巩固应用,内化提高

  在这一环节中,我设计了多种形式的练习,有基本练习、变式练习、开放练习等几个层次,目的是巩固新知,帮助学生更进一步理清解题的思路,达到融会贯通。

  第四环节:回顾整理,反思提升

  让学生畅谈自己在本课中的表现和收获,体现了新的课程理念,给学生充分表现自己的机会。在课的结尾引导学生说一说自己在本节课有什么收获?

  (设计意图)

  让学生说一说收获,不但培养学生自我反思的好习惯,而且提高了他们自我梳理知识的能力。让学生享受成功的喜悦。

解决问题说课稿2

  一、说教材:

  1、教学内容:

  这部分内容是再教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例5和例6的教学应用正、反比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是再原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。

  成正、反比例的量,在生活实际中应用很广,学生再前两年的学习中,已接触过这种情况的问题,如归一、归总应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,再原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正、反比例的量,从而加深对正、反比例意义的理解。同时,由于解答时是根据正、反比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,再教学上要十分重视从旧知识引申出新知识,再这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的`能力。

  2、教学目标:

  知识与技能:

  1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。

  2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。

  3、培养学生的分析、判断和推理能力。

  过程与方法:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  情感态度和价值观:

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  3、教学重点:用比例知识解决实际问题

  4、教学难点:能够正确分析题中的比例关系,列出方程

  二、说学情

  用比例解决问题这部分内容是学生在对比例的基本性质有了一定的建构基础以及掌握了正、反比例的意义的背景下进行探索学习的。六年级学生已经具备了一定的探索、合作、交流、自主学习的能力。相信在教师的组织和引导下一定能突破重、难点知识,从而完成教学目标。

  三、说教法学法:

  1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本应用题的方法和比例关系的知识,提出问题,为学生创设有效的数学活动,探究解决有关基本应用题的解题思路和计算方法。

  2、采取自主探索、合作交流的学习方式,让学生通过看、想、交流等数学活动,自觉参与到知识形成的过程中,获得基本的数学知识和技能,激发学生的学习兴趣,增加学生学好数学的信心。

  3、从“一题多解”的探究过程中,提高学生思考问题,解决问题的能力,确保数学活动的有效性。

  四、说教学流程:

  第一、情境引入:

  老师请你用一把米尺去测量学校旗杆的高度,你能行吗?给出信息,引入新课内容。

  第二、联系实际,复习迁移

  1、出示课件:数学门诊

  判断下面的说法是否正确,并说明理由。

  2、判断下面两种相关联的量是否成正比例?为什么?

  第三、情境教学新课

  1、学习例5,用正比例意义解决问题。

  (1)、学生提出问题。同学们,全社会都在节约水资源。请大家想一想,和我们息息相关的用水问题里藏有哪些数学问题呢?

  小结:水的单价一定,用水吨数与总价成正比例。

  2、教师提出问题。

  看来同学们能正确判断两种量成什么比例关系了。这一节课我们一起运用比例知识来解决一些实际问题。请看屏幕。

  出示例5:

  思考:题中告诉了我们哪些信息?要解决什么问题?你能利用数学知识帮李奶奶算出上个月的水费吗?

  3、解决问题。

  (1)尝试解决。

  (2)根据学生回答教师板书:

  (3)激励引新。

  大家能用我们学过的方法先求出每吨水的价格,再算出10吨水的价钱。请大家再认真想一想,能不能用刚刚学过的知识——比例来解答呢?

  思考:

  ①题目告诉我们哪几个量?

  ②哪种量是固定不变的?哪两个量成什么比例关系?

  ③怎样列含有未知数的等式?)

  学生回答上述问题完成填空。(因为每吨水的价钱一定,所以用水的吨数和水费成正比例,。也就是说,两家的水费和用水的吨数的比值相等。可以根据比值相等列出等式。)

  反馈学生解题情况。

  验算:你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

  3、变式练习。

  瞧!王大爷又遇到了什么问题呢?出现下面的练习:王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

  学生独立用比例的知识解决这个问题。

  第四、学以致用。

  1、用比例解决下列问题。

  1、万老师骑摩托车从家到学校上班,6分钟行使了480米,照这样计算,他从家到学校共行使了20分钟。他家到学校的距离有多少米?

  2、今年元旦那天,小丽的妈妈到银川商城购物,发现有件保暖内衣质量不错,于是买了3件,共付了180元。回来后,邻居张大妈也想买几件,于是乘车到银川商城买同样的保暖内衣,她共付了300元,能买几件?

  3、解决课前提出的问题。(学校旗杆高一般由学校面积大小而定)

  提醒:同一时间、同一地点的身高和影长成正比例。

  根据实际情况,可以独立解答,也可以讨论解答。

  4、实践作业。

  1、一根粗细均匀的圆木,锯成了5段共用了326分钟,照这样计算,如果把这根圆木 锯成7段,需要多少分钟?

  2、请同学们利用上一题的原理测一测咱们学校的教学楼的高度。

  第五、课堂总结。

  说说你的收获。评价自己的表现。

解决问题说课稿3

  我说课的内容是义务教育教科书小学数学一年级上册46页第五单元第一小节6和7的认识及加减法中的用数学部分。

  一、说教材

  本节课是在学生学习6、7加减法的基础上展开教学的。教材第一次出现用情景图呈现数学问题的形式,呈现了一个简单求和的数学问题,使学生明确知道两个相关的信息和一个相关的问题,就构成了一个简单的数学问题。

  教材用有层次的三句话:图里有什么?怎样解答?解答正确吗?对学生用数学解决问题的过程给予指导,引导学生体会解决一个数学问题所要经历的步骤,学习解决问题的基本方法。

  从整个知识网络来看,它标志着数学应用题教学的开始,是向后面的文字应用题过度的桥梁。

  通过分析教材,我确立了如下教学目标:

  1、理解大括号和问号的意思,会用6、7的加法解决生活中的简单问题。

  2、通过学生观察、叙述,提高语言表达能力,初步尝试小组合作学习培养学生的合作交流能力。

  3、体验数学与生活的密切联系,培养学生学习数学的兴趣。

  本节课的重点是用6和7的加法解决生活中的实际问题。难点是让学生学会观察、分析,提出合适的数学问题。其中,正确理解大括号和问号的意义是关键所在。

  对于教材重难点的确定,我是通过如下两个方面的分析得出的:

  1、从教材知识点分析:6和7的加法在生活中应用广泛,同时它又是进一步学习8和9以及10的加减法的最直接的基础。

  2、从学生心理特点和认知规律来分析:学生的思维能力和语言表达能力不是很强,通过观察图画,分析并叙述出已知条件和要求的问题,进而选择正确算法,还是一个比较抽象的过程。

  针对重难点,我打算采取小组合作和用手势直观演示相结合的方式加以突破。

  二、说教法与学法

  学生的`经验和活动是他们学习数学的基础。本节课的教学我根据数学新课标的基本理念,精心设计学生的数学活动,充分利用了教具和多媒体教学手段,调动学生多种感官参与学习。让学生在实际中运用所学知识,体现了数学来源于生活,生活中处处有数学。整节课以小组竞赛活动为主线,把教学内容清晰有趣地串了起来,尽可能的激发学生的求知欲望。

  在学生自主提出问题的基础上,采用独立探究、合作交流解决问题的方法,并引导学生进行展示和质疑,使学生亲身经历分析问题、解决问题的过程,感受用数学解决问题的乐趣。

  三、说教学过程

  我的教学过程主要由恰当导入、我能学会、我能合作、我能展示、我能达标这五个环节构成。

  在恰当导入环节,针对一年级学生具象思维为主的思维特点,我创设了猜谜语的情境,引导学生从算算一共有几个苹果开始解决问题的学习。

  在我能学会和我能合作这两个环节中,我主要围绕以下三个问题开展教学:1、图里有什么?2、怎样解答?3、解答正确吗?我首先把求一共有几个苹果这个问题以图画的形式展现在黑板上,接着让学生认识两个新朋友:大括号和问号,并向学生介绍这两个符号的作用。再引导他们理解大括号和问号合在一起表示的意义,并对着情境图叙述完整的图意,互相反复交流,直至明确要求的问题是什么。在引导学生叙述图意的过程中,其实已孕伏了应用题的结构,即两个已知条件和一个问题,这对于学生进一步学习应用题是非常有益的。在学生明确数学问题之后,让学生独立列式解决这个问题,并思考为什么用加法计算,把自己的想法和身边的同学说一说。在互通知识中,也给每位学生提供了锻炼语言表达能力的机会。然后,再进行全班交流,并提出自己解决不了的疑难问题,做到知识共享。

  在此基础上,进入我能展示这一环节。我引导学生以小组竞赛的形式进行展示型练习。我设计了果园、树林、菜园、农场、池塘、舞台等与生活相关的情景,让学生在练习的过程中,体会到生活中处处都有数学。同时使学生进一步巩固解决问题的一般步骤。

  最后一个环节是我能达标,主要采用当堂检测的方式来及时了解学生对新知识的掌握情况。我设计了两个层次的检测题,基础题是看图解决问题,提高题是用自己喜欢的符号编一道用加法来解决的数学问题。提高题不要求所有同学都会做,允许后三分之一学生只完成基础题。

  总之,为了较好完成这节课的教学,我认真解读教材,针对学生的年龄和认知特点,确立教学目标,精心设计教学环节,希望通过课堂教学,学生在增长知识的同时又培养其数学能力。希望各位领导、老师能多给我提一些宝贵的意见,帮助我成长,相信以后的教学中我一定会克服自己的不足,让自己的课堂真正精彩,让学生真正受益!

解决问题说课稿4

  一、教材分析及处理:

  《用百分数解决问题(二)》这部分内容是求一个数是另一个数的百分之几的应用题的发展。它是在求比一个数多(少)几分之几的分数应用题的基础上进行教学的。这种题实际上还是求一个数是另一个数的百分之几的题,只是有一个数题目里没有直接给出来,需要根据题里的条件先算出来。通过解答比一个数多(少)百分之几的应用题,可以加深学生对百分数的认识,提高百分数应用题的解题能力。在教材使用上我大胆改变教材材:从学生身边的事出发,以收集、整理学生植树活动的数据情况分析来建构。从植树活动情景中沟通生活中的数学与课本中数学之间的联系,使生活和数学融为一体,让数学成为学生发展的动力源泉,这样更会体现课堂教学“以生为本”、以“发展为本”和教师由“教教材”向创造性的“用教材”的新理念。

  二、学情现状分析:

  用线段图表示题目的数量关系有助于学生理解题意,分析数量关系。再通过“想”帮助学生弄清,要求实际造林比原计划多百分之几,就是求多造林的公顷数是原计划造林公顷数的百分之几。然后鼓励学生寻找不同的解决方法,这样既开拓了学生的解题思路,又可以发展学生的思维能力。不断的改变题中的问题,使学生进一步加深对这类百分数应用题的认识,看到题里条件和问题之间的内在联系,同时也促进了学生逻辑思维能力的发展。

  三、说教学目标及教学重难点

  在反复挖掘教材的基础上,依据新课标的理念和学生已有的知识基础,我确定本节课的教学目标为:

  知识目标:在解答求一个数是另一个数的百分之几的应用题的基础上,通过迁移类推使学生掌握求一个数比另一个数多(少)百分之几的应用题。

  能力目标:提高学生自己分析问题解答问题的能力,发展学生的逻辑思维能力。

  情感目标:激发学生的学习兴趣,做学习的主人。使学生在认真观察和积极思考中发展学生思维能力,体会到学习成功的乐趣。

  依据本节课的教学目标,我确定的教学重点:理解和掌握求一个数比另一个数多(少)百分之几的应用题的解题思路和方法。

  教学难点:分析应用题的数量关系,理解一个数比另一个数多(少)百分之几的含义。

  四、说教法与学法

  为了实现教学目标,突出重点,突破难点,在学生已有的认知水平和现有的知识储备的基础上,本节课我主要采用自主探究、合作交流和尝试教学法,突出学生的主体地位。用以前学过的一个数是另一个数的百分之几的分数应用题引入新课。通过提出问题、画出线段图、分析数量关系、找出解决问题的方法,让学生亲身体验知识形成的过程,获得基本的数学知识和技能,从而激发学生的学习兴趣,增加学生学好、用好数学的信心。

  五、教学程序设计:

  本节课,我用植树造林活动作为教学主线,让学生在自己让学生在自己熟悉的生活背景中发现数学、掌握数学和运用数学。力求教学设计将在以下几个方面体现:

  1、在内需的情感导入中,使学生积极参与、探索新知。

  2、在宽松的学习氛围中,让学生经历过程、主动探究。

  3、在多样的课堂评价中,使学生认识自我、建立自信。

  4、在开放的教学教程中,让学生应用数学、体验成功。

  1、探究新知,让学生根据图中提供的条件提出用百分数解决的问题,进一步调动学生学习的积极性。学生自己提出问题,解决问题,让学生在自己熟悉的生活背景中发现数学、掌握数学和运用数学,在过程中体验数学与周围的联系,发展自己的解决问题策略和研究问题的能力,促进同伴间的合作与交流。从而达到:人人学有价值的数学;人人都能获得必需的数学;不同的`人在数学的上得到不同的发展的新理念。通过改一改,让学习利用已有学习经验解决比一个数少百分之几的问题。体现一题多解、一题多改、一题多意的用材要求。

  2、深化巩固,由于人们过度砍伐树木,造成了水土流失。我国著名的淡水湖-洞庭湖,因水土流失引起泥沙沉积等原因,面积已由原来的大约4350平方千米缩小为约2700平方千米,没庭湖的面积减少了百分之几?国家实施天然林和藏羚羊保护工程。我国西藏地区藏羚羊的数20xx年是7万只左右,到20xx年9月增加到10万只左右。藏羚羊的数量20xx年增加了百分之几?两道题的练习,学生进一步明白“求另一个数多(或少)百分之几”的问题,应注意找应用题中的标准量,也就是确定单位“1”,用标准量作除数。求一个数比另一个数增加(减少)百分之几的题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。实际应用

  3、课后延伸:

  我镇今年实际造林14公顷。明年计计划造林比今年造林多20%,估计明年造林多少公顷?我们下节课研究.让学生进一步想对数学研究,培养学生学习数学的求知欲。

  总之,在小学数学教学中,应从学生的生活实际出发,联系生活讲数学,把生活经验数学化,数学问题生活化,把社会生活中的实际问题引入学习数学的大课堂中,使学生感受到数学与现实生活的联系,从而激发学生学习数学的兴趣,使他们学会用数学的角度去观察、分析现实社会,去解决日常生活中的现象和问题,形成勇于探索、勇于创新的科学精神。

解决问题说课稿5

  虽然这是苏教版数学教材五年级下册第七单元所安排的内容,但是孩子在之前的学习过程中早有接触,对于转化这一策略在孩子的认知上不是一张白纸,其实他们已经积累了丰富的用转化策略解决问题的经验,本课与其说是教策略,不如说是对过去学习中形成的认识和经验进行总结和提炼,并上升到策略的高度。为此,在教学过程中我对教材进行了重组与二度开,发促使孩子们在解决问题的过程中整理经验、提升认识,感受策略的价值,增强策略意识。

  一、教学例题,感知“转化”

  仔细研读教材,我们可以看出解决问题的策略的教学设计了两条线索,一是关于关于解决问题方法的线索,通过“创生方法——使用方法——用好方法——用活方法”,掌握解决问题的策略;二是关于解决问题策略的线索,通过“初步感知——再次感悟——反复体验”,逐渐形成策略。两条线索一明一暗,方法是明线,策略是暗线,两条线平行同步推进且相互交融。因此,在教学新知时我分成了这样三个版块:

  第一版块:分数中的转化。我把练习十六第2题的前面两个小题前置,因为这样的题型孩子们并不陌生,他们能很快找到方法,从而解决问题,今天课上再次出现,我的意图是让孩子们认识到策略是在总结方法时提炼出来的,解题策略与解题方法同时存在。

  第二版块:面积中的转化。在这个版块的教学中,我是依据例题1的思路按部就班进行活动,学生先是自主探究,找到比较方法与结果,然后再把自己的学习经验在小组中分享交流,使得学生间的思维发生碰撞,从而提升孩子们对于转化这一策略的`认识,最后在我的组织下进行交流、梳理、总结。这一过程中,他们领悟的是转化策略的精髓,获得的是勇于创新的品质。

  第三版块:周长中的转化。在这个板块中,我既安排了转化后周长不变的习题,又安排了转化后周长不相等的练习,这部分内容是我对教材的二度开发,意在让学生体会到在运用策略时也要仔细观察,用心思考,需要对具体问题具体分析、灵活运用。

  二、回顾举例,体验“转化”

  为了进一步丰富学生对转化策略的认识,帮助学生从策略的角度进一步体会知识之间的联系,在这里我播放微课,调动孩子们的多种感官,全面感知转化这一策略的奇妙之处。这一环节的设计,有效地建立新旧知识之间联系,大量的学习材料,让学生感受到了转化的应用价值。

  三、重组练习,运用“转化”

  在练习时,我除了应用教材中的常规题型外,我还设计了这样一条题:2/9×4结果会是多少呢?这条题放在这儿,大多数老师肯定会有疑问:这题放在这里教学有意思吗?后面不是会重点教学吗?其实我是这样想的,一旦我们的孩子走出校园,若干年后他会遗忘大部分的知识与习题,但是你所交给他的学习方法是不会遗忘的,而转化就是我们学习数学的重要方法之一,纵观数学教学,我们总是不停的把新知转化成旧知,帮助孩子理解,便于孩子掌握。我想,这题安排在这儿会给孩子们的认知一个比较大的冲击,会把转化这一策略深深烙在心里。其实这也是国家课程校本化实施的一次小尝试。

解决问题说课稿6

  一、说教材

  “解决问题”是人教版小学二年级数学下册教材第四单元表内除法(二) 第42页的内容。这部分内容是在学生已经积累了一定的解决问题的经验的基础上安排的内容。本节课要求学生自己观察情景图,理解题意,然后解决问题。学好本课知识,为学生以后的解决数学问题打下良好基础。

  根据学生的生活经验和本课的知识特点,我预定如下几个教学目标:

  1、通过“商店买东西”的情境,灵活运用有关除法知识解决实际生活中简单的问题。

  2、通过独立探索、小组合作的方式学习,进一步加强对7——9的乘法口诀计算除法的掌握。

  3、调动学生的学习兴趣,引导学生获得有价值的信息,培养学生解决问题得能力。

  4、 培养学生勇于表达自己的想法,认真倾听他们的意见。在问题处理中,体验成功,培养数学学习兴趣。

  根据教学内容和教学目标和学生的实际情况确定本节课的教学重点培养学生良好的解题习惯,用所学知识解决一些简单的实际问题。教学难点是培养学生发现问题、提出问题并解决问题的能力。

  二、说教法

  本节课我试图通过引导学生观察情景图,放手让学生主动探索解决问题的方法。

  1.我以学生熟悉喜爱的玩具商店引导学生积极主动地观察情景图,把已掌握的知识技能应用于解决新问题过程中,体现学生学习的自主性。使学生学会解决问题,找到解决问题的方法。

  2.体现解决问题策略的多样化

  在教学时,我立足于让学生自主收集、理解数学信息,寻找解决问题的方法。对于学生合乎情理的阐述,给于积极鼓励,激发学生探索的欲望,增强信心。不断的引导和鼓励,使学生逐步提高解决问题的.能力。

  三、说学法

  《数学课程标准》指出,数学教学必须注意从学生的生活情境和感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感,在教学中要努力挖掘学生身边的学习资源,为他们创建一个发现、探索的思维空间,使学生能更好地去发现问题解决问题。

  在这一理念的指导下,引导学生自己观察情景图并提出问题,适时地进行小组合作引导学生在解决问题的过程中说出“怎么列式?为什么这样列式”。利用学生感兴趣的玩具贯穿课堂始终,激发学生解决问题的积极性。

  四、说教学程序

  本节课我设计了以下四个环节:

  (一)以旧引新,激活经验。本环节重在唤醒学生已有只是经验,为后续学习打好基础。

  (二)创设情境,自主探究。在这个环节创设学生喜闻乐见的玩具商店情境,很好地激发了的探究欲望。使学生逐步自主解决问题,经历解决问题的全过程。

  在小组合作交流中突出重点,回顾解决问题的步骤,形成解题模式。

  (三)深入理解,巩固练习。通过解决三道层次分明的实际问题,提高学生分析问题、解决问题的能力。

  (四)课堂小结。谈自己本节课的收获,一方面对本节课学到的知识做一个系统的回顾,另一方面培养学生归纳整理能力,使学生感受到学习的乐趣。

  五、说板书设计

  本节课板书主要呈现解决问题的步骤,重点突出。本板书能给学生起到提纲挈领的作用。

解决问题说课稿7

  一、说教材。

  首先说说我对教材的理解。这部分内容是苏教版六年级上册第四单元的《解决问题的策略》的第一课时,在此之前我们学习了一些解决问题的策略,以及列方程解决实际问题,这为我们本节课的学习奠定了知识基础,而本节课将为我们后面要学习的解决更复杂实际问题奠定基础。

  二、说教学目标。

  新课标要求,人人都要获得良好的数学教育,不同的人获得不同的发展。根据这一理念,联系学生实际,我制定了以下教学目标目标:

  1、知识目标:让学生在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。

  2、技能目标:让学生在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。

  3、情感目标:进一步培养学生独立思考、主动与他人合作交流、自觉检验等习惯,积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  三、说重难点。

  本节课的教学重点在于:理解并运用假设的策略解决问题。

  教学难点:运用假设策略要理清楚新的数量关系。

  四、说教法、学法。

  新课标指出:学生是学习的主体,教师是学习的组织者,引导者,合作者。为了达到这一要求,为了实现教学目标,有效突出重点,突破难点,本节课我将运用启发式教学、复习引导教学、讲授法、探究法等多种教学方式,去引导学生积极思考、自主探究、合作交流,引导他们去感悟运用假设策略解决实际问题的妙处。

  五、说教学程序

  根据上述分析,结合学生的实际情况,我将本节课分为以下几个教学环节:

  第一个环节:复习铺垫,引入课题

  首先,我向学生展示两道关于果汁的问题,这道题目是根据教材中的例题改编过来的。读题并提问:“同学们,你会解决这两个问题?”让学生根据题意分别列出算式后,引导学生提问:“你能说说每一道题目都是根据什么数量关系式列式计算的吗?(学生积极思考后,回答问题)接着提问:“每一道题目中都有几种类型的杯子?”接着指出:只求一种杯子的容量是比较简单的。

  然后,出示例1,先让学生齐读题目,体会和上面两道题目的不同。接着,比较两道题目的异同点,培养学生审题与表达的能力。根据题目的异同点引出课题,今天就来学习解决这类含有两个未知量的实际问题的策略。通过改编例题也会学生解决例题提供了一种思路,为下面的教学做了很好的铺垫。

  第二个环节:合作交流,探究策略。

  解决这道题目似乎有些困难,先和学生一起分析一下题意,找出两个数量关系式。

  然后让学生根据数量关系式再联系以前的知识,讨论探索解决这个问题的思路。学生的思路可能有:第一种:列方程,让学生说出怎么设未知数,设小杯的容量是x毫升,则大杯的容量是3x毫升。第二种:画线段图的方法。引导指出一般我们先画单倍量。小杯共9段,大杯共3段。第三种:全部换成小杯,一个大杯就可以换成3个小杯,一共9个小杯。学生只要说出思路即可,然后事实总结三中思路的共同点,引导学生进一步思考。学生能够发现:都是把两种杯子转化成了一种杯子(小杯)。根据学生们的发现,可以指出:像这样把两个未知量转化成一个未知量的方法就是我们今天要学习的策略假设,运用假设策略可以把复杂的问题转化成简单的问题。进一步揭示课题。

  接下来,让学生打开课本69页,任选其中的一个思路解决这个问题,填写在书上,并提醒学生要检验。教师巡视,观察并引导学生的解题方法。学生完成后,选择使用列方程和画线段图的学生说说解题过程。因为这两种方法是以前学过的,这节课就一带过过,目的是让学生明白解决一个问题有很多方法,起到活跃学生思维的作用。而本节课的重点是第三种思路全都换成小杯,也就是假设全是小杯,需要重点讲解。根据课件辅助教学运用假设全是小杯的解题思路和过程,提供给学生一种思考过程,因为是本节课的'重点,所以请了3位学生按照该思路想一遍,然后再让全班学生想一遍。思路比较明确了,学生比较容易的根据思路列出算式,教师根据学生想法板书解题过程,以及检验过程。学生容易忽略检验的重要性,所以一定要提醒学生养成检验的好习惯。

  提问:刚才假设全是小杯解决了这个问题,这道题还可以怎样假设?让学生不能只满足于解决问题,还要多加思考用不同的假设解决问题。学生比较容易想到还可以假设全是大杯。同样,根据课件讲解思考过程,这一遍主要是让学生自己说,自己想,独立完成解答。

  第二环节:归纳整体,提炼策略

  讲完例题后,及时回顾整个例题,总结运用假设策略解决问题的步骤,让学生进一步理解假设策略。根据刚才解题的过程,一步一步地总结出5个步骤,第一步,分析题意,找到数量关系,发现要求两个未知量,需要使用假设策略。第二步,做出假设,假设全是小杯或假设全是大杯,把两个未知量转化成只有一个未知量的问题。第三步,根据假设,调整数量关系,使数量关系变得简单。第四步,列式解答。第五步,检验反思。

  第三环节:运用策略,掌握策略

  出示练一练,及时巩固新知。练一练是和例题类似的题目,于是我要求学生根据刚才总结的运用假设策略解决问题的5个步骤,去思考并解决这个题目。这道题可能对一部分学生来说还是有些难度,于是我和学生一起完成了第一步分析题意,让学生找到数量关系。接下来的4步就由学生独立完成。第2步时提醒学生假设全是什么更方便解题。一些学生会模仿老师的解题步骤完整得做完这一题。这就说明他们学会了运用假设策略。通过本题提问为什么不假设全是桌子,让学生明白在做假设时要选择方便解题的那个假设。

  在以前的学习过程中,学生已经在不知不觉中,使用过假设策略。让学生先回想一下,小学生的联系知识能力并不强,可能不能一下子想出来。于是,教师让学生观察老师想出来的,让他们判断一下是否运用了假设策略,进一步加深对假设策略的理解,同时也培养学生联系知识的能力,让学生有用新知联系旧知,让自己的知识成为一个体系的意识。

  第四环节:运用策略,闯关练习

  简单总结一下所学新知,设计三个题目,考察学生掌握情况。题目由易到难,层次分明。第一关,填空题,有一个是看图填空,题目比较简单,学生基本都能通过,这便增强了学生的信心,提高了继续闯关的欲望。第二关,稍有难度,但题目中提供了解题思路,根据解题思路,多数学生可以正确解答出来,启发学生课下运用第二种假设解决该题目。第三关,图文题目,先让学生从图中读出有用的信息。然后独立完成,教师巡视,用奖品激励大家认真完成,并找出运用不同假设策略解决问题并且书写完整和完美的学生,放到展示台上供大家学习。

  第四个环节:归纳小结

  提问:今天你有什么收获?通过学生自己归纳,对所学过的知识进行整理,进一步培养学生归纳概括的能力。

  板书设计:

  解决问题的策略

  两个未知量 假设 一个未知量

  复杂 简单

  假设全是小杯 分析题意

  共有:3 1+6=9(个)

  小杯:720 9=80(毫升) 作出假设

  大杯:80 3=240(毫升)

  检验:80 6+240=720(毫升) 调整关系

  80 3=240(毫升)

  答:小杯的容量是80毫升,大杯的 列式解答

  容量是240毫升。

  检验反思

解决问题说课稿8

  一、说教材

  教材分析

  二、说教法

  启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标。

  三、说教学目标:

  1、 使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路。

  2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点: 使学生理解并运用假设的策略解决问题。

  教学难点: 当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。

  四、说教学程序:

  教学过程:

  一、导入:

  1.回顾策略:昨天我们学习了解决问题的策略,回想一下,到现在为止,我们学过了哪些策略来解决问题?

  板书:画图、列表、倒推、替换

  2.提出课题:今天,我们继续来研究解决问题的策略。(揭题)

  二、新课:

  1、出示例题。全班42人去公园划船,一共租用了10条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?

  提问:你准备怎样来解决这个问题?

  学生独立思考交流想法。

  根据学生回答板书各种假设:

  假设10只都是大船

  假设10只都是小船

  假设5只大船,5只小船。

  2、借助画图,初步感知调整策略

  谈话:刚才同学们提出了三种假设,下面我们先来研究假设成同一种船的情况。

  (1)讨论画图: 如果10只都是大船,那我们可以借助以前学过的什么策略来推算出大船和小船各有多少只呢?学生回答:画图

  你准备怎么来画呢?引导学生:用简明的符号来表示船和人(出示10只大船图)每只船坐几人?一共坐了多少人?

  (2)研究调整:

  发现矛盾引发思考: 问题1:假设10只船都是大船,从图上我们发现什么问题呢?(板书:多出8人)

  追问:为什么会多出来呢?

  引导学生明确:当我们把10只船都假设成大船时,也就是把一些小船看成了大船;当一只小船被看成大船时,每条船会多出2人,所以会多出8人

  借助画图,研究调整:

  问题2:那多出8人需要怎样调整?(板书:大船小船)

  先想一想,然后再图上画一画。 集体交流:画法,上台展示并让学生说说想法

  追问:你是怎么想到把4条大船调整为4条小船的呢?

  [设计意图]

  帮助学生调整策略:一条大船调整成一条小船会少了2人,每划去2人就相当于将一只大船替换成了一只小船。多出的8人正好是4个2人,所以要把4条大船调整为4条小船。

  3、借助列表,再次感知调整策略

  谈话:刚才我们借助画图找到了调整的.策略,解决了实际问题。我们还可以借助什么方法来寻找调整的策略呢?(列表)

  (1)观察书上P91页表格,发现什么?

  (2)借助表格调整:

  填入假设,发现矛盾:假设5只大船5只小船,就会比42人少2人(板书少了2人)

  引导思考,表格调整:还少2人,也就是这2人还没坐上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整呢?先想一想,然后在表中填一填。再在小组里交流一下你的想法。

  学生展示方法:

  [设计意图]:引导学生:少2人,需要把一些小船调整为大船。一条小船调整为一条大船可以多做2人,所以调整为小船4条,大船6条。

  4.还有其它方法吗?想一想,在小组里交流一下。

  5、检验结果

  想知道结果是否正确怎么办呢?你有办法检验吗?

  学生口答,老师板书:65+43=42(人) 这是对什么进行检验?如果还需要对船只进行检验怎么办呢? 6+4=10(条)

  6、小结策略

  同学们,我们一起回顾一下,刚才我们是怎么样解决这个问题的?

  (板书:1.假设2.调整3.检验)

  三、练习:

  1.练一练第1题:

  要知道鸡和兔各有多少只?我们可以怎样来假设呢?(学生提出各种假设) 让学生完整说一说,是怎样画图、调整,来推算出结果的)

  2. 练一练第2题:

  出示题目:估一估:可能会是各几块?你是怎么想的?

  学生会出现画图和列表两种,这时可以让学生选择,并说说为什么你们都选择列表的方法?

  五、小结反思,分享收获

  今天,我们学习了解决问题的策略,你有什么收获呢?

  六、巩固提高

  你能运用今天所学的知识解决这个问题吗?

  板书: 解决问题的策略(假设)

解决问题说课稿9

  我今天说课的内容是苏教版六年级下册第六单元解决问题策略的第一课时。

  本单元是在学生已经学习了用画图和列表,以及列举、倒推、替换和假设等策略基础上进行教学的。本节课主要是让学生学会用转化的策略解决问题。转化是一种常见的、极其重要的解决问题的策略。通过转化能把较复杂的问题变成较简单的问题,把新问题变成旧问题。本节课的教学内容是教材71—72页例1、试一试、练一练,练习十四1—3题。

  首先例1提供了两个稍复杂的图形,让学生比较其面积是否相等。

  教材引导学生将它们转化成长方形再作比较,从而初步体验转化策略在解决问题过程中化繁为简的作用。然后再引导学生回忆运用转化策略曾经解决过的问题,从而将以往运用的一些数学方法上升到策略的高度,增强策略意识。最后“试一试”“练一练”和练习十四第1—3题分别安排了数与代数、空间与图形领域的实际问题,让学生运用转化的策略加以解决,从而深化策略的认识,提高灵活思考问题的能力。

  说教学目标:

  根据教材编排要求,我以为本节课的教学目标有三点:一、知识目标:让学生回顾用转化策略解决问题的过程,通过解决具体问题,感悟转化的含义。二、能力目标:让学生在具体问题的解决过程中,进一步积累运用转化策略的经验,掌握一些常用方法和转化技巧。三、情感态度目标:让学生进一步增强解决问题的策略意识,体会运用转化的策略是解决问题的有效方法,增强克服困难的勇气,获得成功的体验。

  说教学重点和难点:学生自主运用转化的策略解决问题。

  说教法和学法:

  结合教材和教学目标我将采用如下的教法和学法:

  (1)合作探究法。教师通过设疑,引导学生合作学习,逐步启发学生探究用转化的方法来解决问题。增强学生探索的信心,体验成功。

  (2)练习巩固法。力求突出重点、突破难点,使学生运用知识、解决问题的能力得到进一步的提高。

  说教学过程:

  遵循小学数学课堂教学的现实性、趣味性、思考性和开放性,本着培养学生的数学意识和提升学生运用知识解决实际问题能力的设计思路,我将本节课的教学内容分为五个环节。一、创设情境,揭示“转化”;

  (3)教学例题,感知“转化”;三、回顾举例,体验“转化”;四、重组练习,运用“转化”;五、故事小结,深化“转化”。

  一、创设情境,揭示“转化”

  数学是和生活密切联系的,课的开始,我先跟学生讲了一个爱迪生和他的助手测量灯泡体积的故事。助手花了几个小时的时间来计算灯泡的体积,也没有算出来,爱迪生能很快的算出来,让学生猜一猜爱迪生是用的什么方法?根据学生的回答,我适时小结:把灯泡的体积转化成水的体积,就是一种非常重要的解决问题的策略,叫做“转化”。通过故事情境导入新课,激发了学生的学习兴趣。

  二、教学例题,感知“转化”

  我首先出示例1的两幅图,让学生猜一猜这两幅图的面积大小,并且提问你们准备用什么方法来证明你的猜测?先让学生独立思考,然后四人小组交流各自己的想法。根据学生回答,教师配以课件演示。(将其转化成长方形比较)对照课件我继续追问:(1)第一个图形是怎样转化成长方形的?上面的半圆向什么方向平移了几格?(2)第二个图形是怎样转化成长方形的?左右两个半圆分别按什么方向旋转了多少度?指名回答后,我又再次用课件演示“转化”过程。一边演示,一边和同学共同叙述转化:第一幅图把半圆向下平移5格后转化成了长方形;第二幅图把左右两个半圆旋转180度后转化成了长方形;通过演示、回顾、叙述学生经历了转化的过程,丰富了感性认识,这时我又适时点拨:在图形的变化过程中形状发生变化,面积不变,都转化成相同的长方形,所以一、二两幅图的面积也相等。在“变与不变”的讨论中,让学生感受到:通过转化可以化繁为简,能清晰地比较出两个图形的大小。

  在这个环节中,我未作铺垫直接出示例题,提出富有挑战性的问题,通过问题解决让学生在探索交流的基础上,借助多媒体课件的演示,使学生对图形的具体转化方法获得清晰的认识,感受转化是解决问题的一种好策略。

  三、回顾举例,体验“转化”

  为了进一步丰富学生对转化策略的认识,帮助学生从策略的角度进一步体会知识之间的联系。在完成了例1的教学任务后,我让学生回忆以前学过的知识中,在哪些地方都运用到了转化的策略?我先给学生一个交流的机会,让他们把回忆的内容给小组成员说说,然后全班交流汇报。通过讨论交流学生会联想到平面图形面积公式推导,体积公式推导,分数、小数的计算、不规则图形的周长计算等等……我让学生具体说一说推导过程。边演示边叙述,比如……课件演示一句话概括。为了引导学生把以往学习的一些具体的数学方法上升到转化策略的高度来认识,我又追问:我们在运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题)小结同学们的答案,并板书转化的核心作用“化繁为简、化新为旧”。这一环节的设计,有效地建立新旧知识之间联系,大量的学习材料,让学生感受到了转化的应用价值。

  四、重组练习,运用“转化”

  为了帮助学生掌握一些常用的转化方法和技巧,教材安排了多条练习。教学中我根据知识的体系,对练习的内容进行调整、归类、重组,加强整合力求体现练习的梯度和层次。让学生在巩固知识的同时,刷新解决的能力。我主要是从两个方面重练习:一、“空间与图形”领域的练习;第二是“数与代数”领域的练习。

  在“空间与图形”方面,我设计了这样几道练习:(对照课件一两句话概括)

  在完成以上几道练习后,引导学生回顾小结,进一步体验,通过平移和旋转,我们把复杂图形变个形转化成简单图形,原来的问题就迎刃而解了,就象匈牙利著名数学家路莎彼得说过的那样:解题时,往往不对问题进行正面的攻击,而是将它不断变形,直至转化为已经能够解决的问题。

  在“数与代数”领域,我设计这样几道练习:首先出示一道分数加法计算题1/2+1/4+1/8+1/16。如果用通分的方法,学生感觉很麻烦。顺势提问我们还可以借助什么策略来化繁为简呢?如果有困难,老师给一些提示:如果把这个大正方形看作“1”(点击)。

  这些分数分别表示什么意义?教师配以课件演示。并强调单位“1”相同。

  提问:求得是这些涂色部分一共是多少?你能转化成一个什么问题呢?引导学生说出从空白部分入手,把这个加法算式转化成一个减法算式也能求出它们的和。

  学生豁然开朗,这时我给这题再添上一个加数,加一个1/32,和是多少?要求阴影部分的和可以从空白部分着想,看来用转化的思想解决问题也可以从反面入手。把抽象的'数转化成图形,数形结合有助于思考,运用转化的策略解决问题时,让学生谈谈自己使用“转化”策略解决问题时候的体会和感想。

  我以为通过这样的设计体现了数与形的转化和结合,深化了知识,帮助学生理解知识的形成过程。

  其次,我还设计了这道练习,出示练习十四第一题,面对复杂的问题,学生往往感到束手无策,我根据学生的年龄特点,进行有效地引导:(课件演示)

  叙述:如果有4支球队比赛,第一轮像这样比一比,决出2个胜者;第二轮再2个胜者比一场,决出冠军。一共进行了3场比赛。

  如果有8支球队比赛呢,第一轮像这样比一比,比了几场?淘汰了几支球队?(4支)第二轮再这样比一比,比了几场?又淘汰了几支球队?(2个)最后两个胜者比一比,就决出冠军。数一数,一共进行了几场比赛?(7场)

  那16支球队比赛,决出冠军要比几场呢?(电脑演示:16支球队出来)

  面对学生的成功喜悦,我又追问:如果从淘汰的角度,反过来思考,还可以选择转化成一道简单的减法算式?在不断地自我反思和追问中,学生发现还可以直接将问题转化成16—1的算式进行解决。

  按照教材的编写意图对练习进行重组,尊重学生的学情、巧妙地体现知识体系,呈现形式灵活、多样。通过提问、交流,既调动了学生学习的积极性,提高了练习实效,又培养了学生解决问题、分析问题的能力。而多媒体的功能也在此环节中得以充分发挥,数字转化为图形或曲线转化为直线,都能淋漓尽致的表现出来,让学生能头、脑、眼、口、手并用,达到最佳学习状态。)

  五、故事小结,深化“转化”

  1.数学文化渗透(曹冲称象)

  课的结尾,我会让学生讲一讲“曹冲称象”的故事,并指出曹冲是把大象的重量转化成了石头的重量。这样的设计照应了开头,同时也将学生的眼光从课堂再次拉向了现实生活,有利于学生自觉运用转化的策略解决生活中的问题。

  最后我用著名数学家华罗庚的一句名言来结束全课。

  “神奇化易是坦道,易化神奇不足提”————华罗庚

  意思是说,把复杂的问题转化成简单的一路平坦,而把简单的问题转化成复杂的就不值得提倡了

解决问题说课稿10

  一、说教材

  (一)教材分析

  “解决问题”是人教版小学数学教材三年级下册第8单元中的内容。本节内容安排了两个例题,分4课时进行教学,今天我说的是其中的第1课时。这部分内容是在学生已经积累了一定的数量关系及解决问题的经验,初步了解了同一问题可以有不同的解决方法的基础上学习的。学好本课知识,必将为学生以后的解决数学问题提高一个阶层。

  (二)学情分析

  学生在二年级学习时,已经会用表内乘法、除法以及加减法解决两步计算的实际问题。对本课所研究解决的数学问题,学生在以往的学习过程中,在生活的实践体悟中,有一定的整理信息分析问题和解决问题的思想方法经验。

  (三)目标定位

  根据学生的生活经验和知识背景及本课的知识特点,我预定如下几个教学目标:

  1.让学生经历发现问题、提出问题、解决问题的过程,学会用乘法两步计算解决问题。

  2. 注意培养学生多角度观察问题,解决问题的能力,体现解决问题策略多样化。

  3.通过解决具体问题,感受数学在日常生活中的广泛应用。重点是让学生学会用乘法两步计算解决问题,体现解决问题策略的多样化。难点是会用不同方法解决同一问题。

  二、说教学理念

  1、放手让学生主动探索解决问题的.方法《数学课程标准》指出,数学教学必须注意从学生的生活情境和感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感,在教学中要努力挖掘学生身边的学习资源,为他们创建一个发现、探索的思维空间,使学生能更好地去发现,去创造。在这一理念的指导下,我以学生熟悉的广播操、跑步、相册等为教学资源,让学生已掌握的知识技能对解决新问题产生积极的影响,体现学生学习的自主性。使学生学会解决问题,找到解决问题的方法。

  2、体现解决问题策略的多样化 在教学时,我立足于让学生自主收集、理解数学信息,寻找解决问题的方法。有意识地引导学生从不同角度去分析信息、寻找方法,对于学生合乎情理的阐述,给于积极鼓励,激发学生探索的欲望,增强信心。不断的引导和鼓励,使学生逐步形成从多角度去观察问题的习惯,逐步提高解决问题的能力。

  三、说教学程序:

  1、创设情境

  以旧引新 这一环节,我从学生熟悉的广播操入手,通过让学生说说是怎么猜的,加深学生对行列的认识,同时也巩固了几个几。

  2、注重发现

  收集信息 提出问题 解决问题从一个小方阵,很自然地呈现出书本的例题:三个大方阵,让学生通过观察,去发现题中所呈现的数学信息,再出示问题,形成一道完整的解决问题。通过例题的分析与解答,旨在让学生初步感受到一题多解的思维。当然,此时的教师不是以旁观者的身份在看,而是以合作者的身份积极参与。在解题过程中,学生与学生之间会存在着一定的差异,此题的教学,意在使部分理解能力较强的学生理解并能掌握两种或两种以上的解题方法,而其余学生只要掌握自己理解的那种方法即可。

  3、联系生活

  学以致用这里我安排了三个练习,第一题是在教师的指导下完成,第二题放手让学生自己来探索,在反馈时重点让学生来说说是怎样想的,第三题安排了一题让学生自己来提问,并解决问题。四、全课总结,拓展延伸 通过“你今天学到了什么?”让学生对本课有一个回顾,然后通过数学日记的形式来提出“一家五口一共要花多少钱?”?这个问题来拓展学生的思维,让学生对这两类两步计算问题的不同有一个初步的比较,为后续学习做好铺垫。 在两年的新课程数学教学发现,新课程背景下的学生解决问题的能力普遍有所下降,很多的学生拿到题目后,总是很茫然,或是有些学生知道该怎么解决,但让他把想的过程说出来却很困难,那么他还不是真正地懂应该怎么做。拿到这一课时,我问了一些教过老教材的教师,她们认为以前教老教材时,用先提中间问题的方法来教,学生普遍掌握得比较好,思路很清晰。于是在本课中,我借鉴了老教材的一些做法,把传统的方法引进了新课程课堂,在学生把想的过程说出来以后,我把它板书在黑板上,一来想给后进的学生一个引领,当然最大的目的还是想把学生混乱的思维整理出来,有意识地培养学生有条理地说,进一步培养学生的数学思维能力,提高学生解决问题的能力,在这里只是想尝试一下。

解决问题说课稿11

  教材:六年级上册P20

  各位老师,下午好!我说课的内容是人教版小学数学六年级上册20页的例2《解决稍复杂的求一个数的几分之几是多少的问题》。

  我要回答的问题有:

  1、新课标对问题解决有什么要求?

  2、例2的编写意图是什么?

  3、我是如何进行例2教学的?

  先回答的第一个问题:新课标对问题解决有什么要求?

  解决问题作为体现小学数学教育“过程与方法”目标,其要求贯穿于数与代数、空间与图形、统计与概率、实践与综合应用的教学过程之中,贯穿于整个数学教学的始终,主要是使学生增强发现和提出问题的能力,分析和解决问题的能力。解决问题目标的实施,按照新课程的要求,结合教学内容,努力培养和发展学生的“四个意识”。

  首先,是突出问题意识,要求学生能从具体情境与社会生活中发现并提出简单的教学问题,能综合运用一些数学知识加以解决。

  第二,是加强策略意识,使学生能探索和分析解决问题的有效方法,获得解决问题的一些基本策略,体验解决问题策略的多样性。

  第三,是重视合作意识,要求学生从事与同学合作解决问题的活动,尝试解释自己的思考过程。

  第四,是提倡评价与反思意识,使学生能初步判断结果的合理性,经历回顾、整理解决问题过程和结果的活动。

  我要回答的第二个问题是:

  例2的编写意图是什么?

  我打算分三步来介绍:

  第一步:教材的逻辑起点在哪里?

  教材是在学习了例1的知识,理解和掌握了求一个数的'几分之几是多少这一问题的思路与方法基础上,学习解决求比一个数多(或少)几分之几的问题,此例题既是对旧知识的延续,又是学习新知识的起点。

  第二步:例2的编写思路是怎样的?

  教材从绿化造林可以降低噪音这一环保问题引入,出示情境图:公路上汽车的噪音有80分贝,经绿化隔离带后,噪音降低了1/8。从而提出问题:现在听到的声音是多少分贝?

  很显然,此例题反映的是整体与部分的比较关系,即知道一个部分量是总量的几分之几,求另一个部分量的问题。

  教材呈现了两种基本方法:

  一种是先求出一个部分量,再用总量减去这个部分量,求出另一个部分量;另一种是先求出要求的部分量占总量的几分之几,再根据分数乘法的意义求出这个部分量。

  第三步:两种解法的区别在哪里?

  教材中以一句“两种思路有什么不同?”提示教学中要求学生对两种思路进行比较。发现两种思路体现两种不同的思考方法,不同的解题模型。第一种可以归结为“求比一个数少几的数是多少”的解题模型,第二种可以归结为“求一个数的几分之几是多少”的解题模型。通过比较,使学生加深对两种思考方法的认识,同时培养学生比较、归纳的能力。

  我要回答的第三个问题是你是如何进行例2教学的?

  根据新课标对问题解决的要求,我打算分3个步骤进行教学:

  一、 情境引入、提出问题,突出问题意识。

  根据例2的编写意图,我将例2改为下面两道例题:

  1、北京常规双飞六日游原价20xx元,现在降低了1/5,现在的价格是多少元?

  2、北京国庆专线双飞五日游原价1800元,现在提高了1/6,现在的价格是多少元?

  我这样改写的目的是为了更好地体现整体与部分量之间的两层关系,即总量减去一个部分量等于另一个部分量;部分量加上部分量等于总量,从而进一步整合例题的教学目标,完善此类问题解决的基本结构,这一对教材进行创造性的处理,体现了教师应该用教材教,而不是教教材的理念。

  在教学中,我先出示两条数学信息:

  1、北京常规双飞六日游原价20xx元,现在降低了1/5

  2、北京国庆专线双飞五日游原价1800元,现在提高了1/6

  然后提问:看到这些信息,你最关心的会是什么呢?学生自然就会想到现在的价格会是多少呢?通过让学生根据相关联的信息,提出问题,并将信息和问题完整地叙述出来,同时出示例题。

  这一环节,让学生根据信息提出问题是为了加强了学生的问题意识;让学生能从数学的角度去尝试解决生活中的实际问题,这是基于对学生数学意识的培养。

  二、 尝试解决、建立模型,加强策略意识。

  首先解决第一个问题,先让同学们尝试画线段图,再来解决问题。画线段是解决问题的重要策略,为了培养问题解决的策略意识,因此,这里我想利用线段图辅助理解题意,从而把握数量关系。

  同时,我也请两位学生上台进行板演,画出线段图并列式计算。

  对于第一个问题,学生的解法可能会出现这样两种,20xx-2000*1/5=1600(元) 20xx*(1-1/5)=1600(元)

  先对第一种方法进行交流:我先让学生说说自己的想法,在了解了学生的想法之后,要求学生明确第一步(20xx*1/5)在算什么?为什么这样算?让生说清楚 20xx元是什么,1/5是什么,降低了谁的1/5?同时把“降低了原价的1/5”这句话进行板书,并让多个学生说一说。通过这样一说,使学生明确这种方法先求的是降低的价格,用原价减去降低的价格,求出现在的价格。从而建立了总量减去一个部分量等于另一个部分量的解题模型。

  对第二种方法的交流:在教学中,我让该生先向大家介绍一下方法,然后抓住重点进行提问:1-1/5在算什么?希望学生说出“现价是原价的几分之几”,并让多个学生说一说“降价1/5,就表示现价是原价的1-1/5,即4/5。”通过师生间的互动交流,使学生明白,要求现在的价格,就是求原价的1-1/5是多少?所以先求“现价是原价的几分之几”,再用分数乘法的意义求出现在的价格。在充分经历解题思路复述的过程中,培养了学生交流与合作的意识。

  对于第二个问题,我想重点应突出两个功能:一、巩固强化以上两种不同的解题方法,建立两种不同的解题模型;二、加强求比“1”多(少)几分之几是多少的两种分数应用题的数量关系的对比。

  因此,在教学中我想可以让同学们像刚才一样,先试着画线段图来解决,然后和同桌交流想法。

  在反馈交流过程中,学生也会提到以上两种方法。对于第一种方法:我会重点突出提价1/6的具体含义,使学生明确其实就是提高了原价的1/6。再用原价加上提高的价格等于现在的价格。

  而第二种方法,使学生明白,要求现在的价格,就是求原价的1+1/6是多少?所以先求“现价是原价的几分之几”,再用分数乘法的意义求出现在的价格。

  由于两种方法和第一个问题相类似,这里不再赘述。

  三、比较分析、加深认识,增强学生的反思意识。

  这里的比较包括两个方面:首先我让学生对两种解题方法进行比较,其次对两种题目类型进行比较。

  对于两种方法的比较:是在以上两种解法梳理的基础上,我让学生通过讨论交流,让学生明确两种方法都是把原来价看做单位“1”,都需要求原价的几分之几。第一种方法是根据已知条件先求出原价的1/5是多少,即降价多少,再求出现在的价格。第二种方法是根据问题直接求现在的价格是原价的几分之几,再求出现在的价格。从不同的角度思考体现了两种不同的数量关系,就有了两种不同的解题方法。通过比较增强学生的反思意识,达到对两种方法的真正理解。

  对于两种题目类型的比较,我刚才就有提到,这两道例题更好的反映了整体与部分的比较关系。第一题是总量减去一个部分量等于另一个部分量,第二题是部分量加上部分量等于总量。通过这样的比较,使整体与部分两者之间的关系更加的完整,在知识层面上,使解决求比“1”多(少)几分之几是多少?的问题达到了有机的融合,形成了较为完整的知识结构;在解决方法上,充分体现了两者的联系与区别。

解决问题说课稿12

尊敬的各位评委老师:

  你们好!

  今天我说课的内容是《义务教育课程标准实验教科书·数学》(苏教版)六年级下册第六单元《解决问题的策略—转化》第一课时

  本课是在学生已经学习了用画图和列表以及列举、倒推、替换和假设等策略的基础上,教学用转化的策略解决相关的实际问题。转化是一种常见的、极其重要的解决问题的策略,它是指把一个数学问题变更为一类已经解决或比较容易解决的问题,从而使原问题得以解决的一种策略。转化也是一种最常见、最基础的思维方法,它可以在数与数、形与形、数与形之间进行转换,具有灵活性和多样性的特点。在此之前,学生已经初步积累了一定的用转化的策略解决问题的经验,也掌握了一些技巧和方法,但当时这些技巧和方法更多是针对解决具体问题而言的,因而是零散的、无意识的。

  根据本节课知识的特点、学生的认知背景,我确定本节课的教学目标是:

  1.知识与技能目标:使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

  2.过程与方法目标:通过回顾运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的内在联系;初步形成评价与反思的意识,并在此过程中逐步提升对转化策略价值的认识。

  3.情感态度与价值观目标:学生能积极主动地参与数学活动,乐于和同伴交流解决问题时所运用的策略,能主动克服在解决问题过程中遇到的困难,获得成功的体验,提高学好数学的自信心。

  本节课的教学重点是:会运用转化的策略分析、解决问题,体会转化策略的价值。难点是能根据问题的特点确定具体的转化方法,初步形成策略意识。

  为了突出重点、突破难点,根据教学内容以及学生的认知基础、年龄特点,本节课主要采用动手操作、自主探索、合作交流的学习策略,鼓励学生通过自主探索、研究、小组合作交流等方法主动获取知识,提高学生分析、解决问题的能力。

  教师的教应立足于学生的学。教学中,我努力体现教师为主导、学生为主体的原则,注重知识形成过程的教学,通过启发、引导、质疑等方法,培养学生主动探讨知识的能力和概括、表达的能力。利用直观教具、多媒体课件等手段,达到激发学生兴趣、提高学生理解知识的能力,从而提高课堂教学效率,促进学生数学素养的不断提升。

  教学具准备:多媒体课件、不规则图形的题纸等。

  根据教学内容、知识的`特点以及学生的认知背景,我预设以下环节展开教学:

  第一环节:创设情境,感知策略。

  根据学生的年龄特点和认知水平,用文字、语言、图片、动画、视频等形式,把学生引入一个与教学内容相关并适合学生探索、思考、易于激发兴趣、活跃思维的情境,这样可以让学生真正从情境中得到学习的动力和源泉。我创设了这样的情境:

  1.听故事:录音播放《灯泡的故事》,初步感受转化的思想。

  2.出示放在方格纸上的两个比较简单的不规则的图形,提出要求:仔细观察,哪个图形面积大?这两个不规则图形比较简单,用数方格的方法很容易比较出面积的大小,对于学生用数方格的方法比较两个图形面积的大小要肯定。

  3.出示第71页的情境图。提出要求:比一比,哪个图形面积大?这两个不规则图形比较复杂,学生可能出现不同意见,建议学生拿出课前准备的题纸,动手剪一剪、拼一拼,在独立研究的基础上同位交流。全班交流时用视频展示学生用平移和旋转转化成长方形比较大小的过程。揭示:这是一种解决问题的策略,叫做转化。(板书课题:解决问题的策略-----转化)

  追问:这是把什么转化成了什么?(适时板书:不规则——规则)

  引导学生思考:这样转化,什么变了?什么没变?使学生体会到:形状有变化,面积没有变化。

  第二环节:主动探究,体验策略。

  在解决问题的过程中,体验策略是非常关键,重要的环节,这个过程就是让学生通过分析、探究大量的实例,逐步体验策略的广泛应用,体会其价值所在。

  谈话:回想一下,在以前的学习中,解决哪些新问题的时候也用了转化策略?学生可能会列举:

(1)推导平行四边形、三角形、梯形、圆的面积计算公式和圆柱的体积计算公式;

(2)计算中,如把分数除法转化成分数乘法、把异分母分数加减法转化成同分母分数加减法、把小数除法转化成整数除法等。

  老师适时用课件演示学生回顾的知识及转化的过程。通过回顾从策略的角度重建相关知识的联系。

  追问:在计算这些题目的时候都用了转化策略,它们有什么共同地方?说说你的体会。

  通过交流使学生明确:转化是把新问题转化成已经解决的问题,转化可以化繁为简、化难为易;并体会转化的实质,即转化前和转化后结果不变。(板书:新知——旧知难——易)

  第三环节:应用策略,解决问题。

  本环节为学生提供若干能应用转化策略解决的问题,这样不仅能使学生感受到策略的稳定性及其特点,同时能培养其综合运用知识解决问题的能力,进一步体会转化策略的价值。在这一环节中要为学生提供自主探索、合作交流的时间和空间,注意并处理好自主学习的主动性、合作学习的互动性、探究学习的过程性。此环节分以下几步进行:

  第一步:练一练。

  1.出示课本第72页的练一练中的两个图形:并出示问题:下面每个小方格的边长是1厘米,这两个图形的周长各是多少?学生独立解答,集体反馈,适时用课件演示,并引导学生思考:这样转化,什么变了,什么没变?并适时评价、引导:在转化的过程中,观察非常重要,想象也很重要。

  2.出示第74页第2题:用分数表示各图中的涂色部分。学生独立解答,集体反馈,适时课件演示。

  第二步:计算图形的周长和面积。

  出示第74页第3题的第二个图形,提问:这个图形的面积可以转化成什么?这个图形的周长可以转化成什么?在交流周长的计算中要注意引导学生区别圆周长的一半和半圆周长的不同。

  第三步:计算第72页的试一试。出示题目:1/2+1/4+1/8+1/16=

  提问:观察算式,这个算式有什么特点?准备怎么算?学生通常想到转化成同分母分数加法。引导学生进一步思考:还能不能转化的更便于计算?课件演示用一个正方形表示1,把每个分数在图中表示出来以后,学生会想到转化成1-1/16。再引导学生反思回顾:加法算式怎么变成减法算式了?

  质疑:如果再加一个数,还能像这样转化成减法算式吗?应该加几?让学生进一步体会题目的特点,掌握方法。

  第四环节:引导总结,提升策略。

  在学生会运用策略分析、解决问题的基础上,教师应引导学生回归生活,进入更深层次的总结,以利于学生知识体系的完整建构,使学生对所学知识有系统化、网络化的认识。

  1.谈话:用转化的策略解决了这么多问题,说说你有哪些收获和体会?可以适时追问:我们遇到什么样的问题可以运用转化策略?

  如果学生说的不完整、重点知识不具体,老师要引导学生将所学谈完整,帮助学生全面总结、提升策略。

  2.拓展到解决实际问题,布置作业。

  谈话:转化策略应用非常广泛,还能解决体育比赛中的问题呢。出示题目:第74页第一题。

  谈话:这道题请同学们课后去思考,相信同学们今后能主动运用转化策略,让它帮助你解决更多生活中和学习中的问题。

  这就是我的板书,因为转化的关键是要能根据具体的问题确定转化后要实现的目标和具体的转化方法,二而转化后的目标又是首先要考虑的,这样的板书有助于促进学生对转化策略的认识。

  以上是我的说课,如有不当之处,敬请各位评委老师批评指正,谢谢!

解决问题说课稿13

各位评委,各位老师:

  大家好!

  我说课的题目是:《用计算机程序解决问题》。主要分为四个方面来说课,分别是说教材、说学情、说教法、说教学准备、说教学过程。

  (一)说教材

  1、本节的作用和地位:

  用计算机程序解决问题,是信息加工和处理的一种重要手段,是人们把现实世界的任务转换成计算机可以直接识别并执行的指令代码。通过学习本节内容,让学生了解到计算机是在人们的具体指令之下解决实际问题的,计算机程序是一组操作指令或语句序列。以往使用过的工具软件事实上也是一种计算机程序,只不过那是别人已经编写好的,可以在计算机上直接使用的工具软件而已。

  通过操作和剖析已经编好的计算机程序,在解决实际问题中分析并了解其工作过程,这种通过问题分析并形成算法再利用计算机程序解决问题的思路和做法,对学生解决问题的时候有很大的帮助。

  2、本节主要内容介绍

  本节课的内容结构是:执行一段计算机程序,建立对计算机程序解决问题的工作过程的初步认识;然后解剖程序实例;了解计算机程序设计的基本过程。

  第一部分内容主要是通过操作一段实用计算机程序加密和解密,了解运行程序解决问题的基本过程。

  第二部分内容了解计算机程序设计的基本过程的有关知识,计算机程序设计的基本过程:分析问题、设计算法、编写程序、调试运行、检测结果、修改完善。

  3、教学目标

  ⑴初步掌握用程序解决问题的过程。

  ⑵能在高级语言编程环境操作执行一段简单的计算机程序代码。

  ⑶初步认识计算机程序代码的执行目的。

  ⑷认识计算机程序设计的基本流程

  ⑸培养学生进一步学习程序设计的兴趣。

  4、重点难点分析:

  教学重点:帮助学生掌握用计算机程序解决问题的过程。

  教学难点:明白计算机程序代码的作用。

  (二)学生分析

  我校高一年级学生在进校后我们作过简单调查,在信息技术学科中有30%左右的学生是“零起点”,还有70%的学生虽非“零起点”,但对以前学过的知识掌握的较差。因此,在教学设计中第一课时对Visual Basic首先作以介绍。

  (三)说教法

  1.教学方法设计

  在教学设计中安排大量的尝试性、探索性的活动,引导学生积极主动地完成学习任务。逐步建立起自主性和研究性的学习模式,从而更加突出学生在教学过程中的主体地位。教学中还安排大量的实践性、操作性的内容,使学生在具体活动中理解信息技术的基本知识,掌握信息处理的基本技能,并能够灵活应用到学习和生活中。因此教学中采用了“启发式”、“探究式”等教学模式

  (四)说教学准备

  本节课的教学在多媒体机房进行,需要多媒体广播系统,投影等设备,学生机应装有VB软件,另外还有教师为教学设计的课件及教材配套的教学素材等资源。

  (五)说教学过程

  (第一课时)

  教与学的实际过程描述

  一、体验程序的运行过程及作用

  实践一、输入并保存一个计事本,文件名为1。txt,尝试用程序1。exe对其进行加密,并生成加密后的文件2。txt。

  实践二、尝试用程序2。exe对文件2。txt进行解密,并生成文件3。txt,对比1。txt和3。txt中的`文件内容,看是否一致。

  ①通过实践一、二,了解程序是以文件的形式存储在计算机中的。

  ②实践一所用到的两段程序是用Visual Basic(简称VB)语言编写的,然后通过编译功能转换为可以立即执行的程序文件。

  ③程序设计语言是人们与计算机打交道的桥梁,通过它告诉计算机执行一系列操作,实现某种功能。程序设计语言有很多种,VB是其中一种,还有VC、C、C++等等

  二、了解用计算机程序解决问题的基本过程

  分析问题——设计算法——编写程序——调试程序——检测结果

  三、尝试用VB编写程序

  1、启运VB,新建标准EXE文件。

  2、出现如下图的界面,工作区中是对象窗口,介绍窗口的组成。

  3、在“视图”菜单中选择“代码窗口”,在“代码窗口”中选择“Form"和“Load",窗口中出现程序代码的首行和结束行代码,接下来输入程序的全部代码。

  ★观摩加密、解密程序

  在代码窗口中复制事先准备好的加密、解密代码让学生观摩加密、解密程序;观摩的过程中,通过详细的演示,让学生初步掌握VB的操作环境,为下一课时上机操作做好事准备。

  关键算法设计:

  加密c$=chr(asc(b$)—10)

  解密c$=chr(asc(b$)+10)

  更改上述代码中的数值,试一试?

  小结:用计算机解决问题的基本过程:

  4、点击运行按钮,检验程序的功能。

  5、保存程序。

  通过“文件”菜单中的“保存”可以保存程序。

  6、通过“文件”菜单中的“生成……。exe”,可把程序编译成可执行文件。

  了解以下各种文件类型:

  图标

  文件类型vb源程序窗体文件可执行文件

  (第二课时)

  (一)回顾用计算机程序解决问题的过程

  当我们遇到问题需要通过计算机程序解决的时候,该如何着手呢?一般来说,可以包括以下这些过程:

  (二)通过一个数学实例体验用计算机程序解决问题的整个过程。借助高一年级学生正在学习函数图像知识的背景,从演示画学生熟悉的y=x2函数图像程序入手,能立即唤起学生求知欲望,产生学习兴趣。

  实例1、请观看老师演示的画函数曲线y=x2程序,然后思考如下问题:

  ①程序是什么?

  ②程序文件里面有什么?

  ③程序是怎样实现其功能的?

  ④用计算机程序解决问题的过程是怎样的?

  具体步骤

  ⑴分析问题

  学生在数学课上用描点法画函数图像的方法、步骤体现的数学思维是计算机程序设计的基础,我利用对比的方法,从人机对话的角度,逐句剖析计算机画二次函数y=x2的图像的程序(见程序剖析实例),让学生了解其结构组成和具体作用,懂得计算机程序设计的基本思想:按照人类解决问题的思维方法,进行人机对话。计算机能够听懂的“话”,就是我们输入的命令。这样,就有利于消除计算机编程的神秘感,激发学生学习计算机编程的兴趣。

  ⑵设计算法

  现在要找出解决问题的方法和步骤,这一过程称为设计算法。算法是程序编写的基础。本例的解决方法是:让二次函数方程y=x2的x值由-5变化到5,每变化一次的变化量是0.0001,然后求出y值,再将求出的x,y值作为坐标来画点。

  ⑶编写程序

  有了清晰的可操作的算法描述,就可以选择一种程序设计语言来编写程序,以实现算法。一般来说,只要算法确定,语言的选择就没有特别的限定,通常根据问题的特性和编程人员对语言的熟悉程度来选定。程序设计语言是人们编程时与计算机沟通的桥梁,熟悉了程序设计语言就可以更好地把算法转换为程序,让计算机执行程序来帮助人们解决问题。在本例子中我们是用Visual Basic语言来实现本算法的程序。构成程序的字符,通常称为代码。

  程序具体代码如下:

  Private Sub Command1_Click() ‘事件

  Dim x,y As Single ‘定义变量

  Picture1。Scale(—10,25)—(10,—25)‘定义坐标系

  Picture1。Line(—10,0)—(10,0),RGB(0,0,255)‘画x坐标轴

  Picture1。Line(0,25)—(0,—25),RGB(0,0,255)‘画y坐标轴

  ‘描点画函数图像

  For x = —5 To 5 Step 0.0001

  y = x ^ 2

  Picture1。PSet(x,y),RGB(255,0,0)

  Next x

  End Sub

  ⑷调试运行

  程序编写好以后,通过键盘输入计算机,然后运行程序,看看程序能否顺利执行。计算机只懂得程序设计语言所规定得语法规则,如果编写程序时违反了规则,哪怕是一个标点符号出错,也会令程序出错,不能执行下去。人们可根据计算机提示的出错信息修改程序,重新调试运行

  ⑸检测结果

  当程序能够顺利运行以后,还需要对程序功能进行分析检测。因为如果程序符合规则,即使有逻辑错误或计算方法的错误,计算机也是检查不出来的。因此,如果结果不合理,还要回头对程序进行修改,直到确定程序的功能正确为止。

  刚才,我们讲解了利用计算机演示y=x2的程序,这一程序给了我们很强的直观感受,但这一问题整个解决过程,忽略了一个重要的东西,就是界面设计下面我就以任务1为例来说明,让学生体验一下界面设计。界面设计演示,代码由学生完成。

  任务1:设计求和:1+2+……+100

  任务1程序具体代码如下:

  Private Sub Command1_Click()

  Dim m,n,k,s As Single

  m = Val(Text1。Text)

  n = Val(Text2。Text)

  k = Val(Text3。Text)

  s = 0

  For i = m To n Step k

  If k = 0 Then Exit For '步长不能为零

  s = s + i

  Next i

  If k = 0 Then

  Label6。Caption = "步长为零错"

  Else

  Label6。Caption = Str$(s)

  End If

  End Sub

  Private Sub Command2_Click()

  Text1。Text = ""

  Text2。Text = ""

  Text3。Text = ""

  End Sub

  Private Sub Command3_Click()

  End

  End Sub

  说作业:通过本节课的学习,使我们在做的同学更加深了对计算机编程的理解,请同学们课下结合数学上计算机程序设计,写出一个一元二次方程的编程。并运行它。

  总结提升:在“编程实现”的基础上,让学生自己运行教材配套光盘上的实用程序,教师引导学生讨论,使学生认识到用计算机编程可以帮助我们解决很多的问题:不但能解决画函数图像这样的小问题,还能解决更大更复杂的问题,如office就是用VB开发出来的,更深刻的感受程序解决问题的魅力。认识到计算机解决问题和人解决问题一样需要有清晰的解题步骤。而对于计算机而言,这种解题步骤就称为算法。

解决问题说课稿14

  一、说教材:

  1、教学内容:

  用百分数解决问题,是九年义务教育小学数学六年级上册的内容,本课时要教学第93页例3,并进行相关的训练。这是在学过小数、分数、百分数的互化,及一般分数应用题解答方法的基础上,所进行的更深入的拓展应用性学习,可以看作是前段落分数应用题教学的巩固与深化,也可以视为体现数学教学学以致用的重要环节。其内容与实际生活比较切近学也比较容易接受。

  2、教学目标:

  作为基础性的自然学科,小学数学在一堂课的教学中,必须努力完成知识传导、能力培养、情感激励及其习惯养成等任务。根据教材和学生实际,我设定了如下内容的三维目标:

  (1)知识技能目标:使学生理解和掌握百分数应用题的类型之一——“求一个数的百分之几是多少的应用题”的基本题型特点、解题思路和运算方法,培养学生自主探究、合作交流、概括总结、实践应用等多种技能。

  (2)过程方法目标:教为主导,充分体现教师组织、点拨、合作的角色定位;学为主体,突出培养学生运用已学小数、分数、百分数互化,及一般分数应用题的解题方法,温故而知新从而探索新规律获得新知识的能力;

  (3)情感态度目标:着眼非智力因素培养,使学生感悟到真知来自于生产和生活的实践,学以致用之中有无穷的快乐,从而焕发学生探索规律、获取新知识的热情和兴趣。

  3、重点难点:

  一堂课教学重点的设定,应依据教学内容的实际,根据教学目标的要求,本着突破基本环节的原则设定。作为一种应用类型的例题教学及其训练课,本节课教学的重点应是:掌握“求一个数的百分之几是多少的应用题”的解答思路和运算方法。

  而教学难点的设定,则要从“教材”与“学生”两相关联的角度,主要考虑学生“学”的实际来确定,据此本节课的教学难点应是:帮助学生把握此类应用题“类”的特点,引导学生找出该类习题中的等量关系。

  二、说教法:

  本节课教学获得成效的关键,是在引导学生自如地应用旧知识,探索解决新问题的途径和方法。按照由已知到未知的总体教学思路,拟分环节采用如下教学方法:

  1、铺垫孕伏法:通过对旧知识的复习回顾,既让学生重温分数、百分数、小数互化的方法,又为后边教学新课,由“一般分数应用题”到“百分数应用题”,设置类比、迁移的情景。

  2、分析讲授法:教者出示例题后,参照一般分数应用题的解答方法,引导学生分析题意,明确已知、未知数量及其问题,揭示其中等量关系,列算式分步运算并答题。

  3、归纳总结法:在讲授例题、直观演示的基础上,引导学生从“例子”中“得法”,参照以前所学“一般分数应用题”解法,梳理总结“百分数应用题”解答思路及步骤。

  4、练习巩固法:在讲解例题,并引导学生总结、从“例子”中得法的基础上,教者及时出举相关同类型基本题目,及其较有难度的变式题目,组织学生及时练习巩固。

  三、说学法:

  注重学法指导是新课改的基本要求,也是有效提高数学教学实效的根本途径,为此在本节课的教学中,我拟努力落实学法指导,在整个教学过程中积极引导学生参与,使学生在获得知识的同时,获得学习方法、养成习惯,并激发学习兴趣。具体说来,主要引导学生采用以下学法:

  1、温故知新法:在复习提问、口答运算、读题列式,做铺垫式练习的基础上,拓展引申出新问题,展示问题情景,引导学生自然而然地发现新思路、获得新知识。

  2、自主尝试法:在例题讲解之前,留一定的时间让学生作尝试式解答。在例题讲解之后,及时让学生进入自我独立解答实践。在总结归纳时,也能多给学生机会。

  3、合作探究法:组织小组合作学习,在观察归纳发现等活动中,注意发挥集体合作学习的威力,充分利用班级优质生源带动全班的探究和学习。

  4、课堂演练法:在课堂教学的各个环节中,尽可能多安排不同形式的学生演算活动,在例题讲解完毕之后集中安排有梯度的课堂练习,组织学生当堂练习,既消化所学新知识、形成能力,又借以培养学以致用的意识。

  四、说教学程序:

  课堂教学程序是体现教学理念,完成教学目标的载体,本着温故知新、讲练结合、突出重点、自如拓展的基本思想,本节课我计划按照如下几个环节完成:

  (一)激情引趣:这是本节课的前奏,让学生在欣赏中静心凝神,从而调动学生学习的积极性,为本节课的顺利完成创设一个温馨和谐的情景。

  (二)铺垫孕伏:这既是对已学知识的复习,又是新课学习前的必要准备。

  我先以发问让学生明确这一阶段学习的主要内容——“百分数”;之后又以继续发问,让学生重温百分数的意义——“表示一个数是另一个数的百分之几的数叫做百分数。”我接着指出:为了比较数量的大小,常常需要把分数、百分数、小数进行“互化”,随即出示两道互化题目,指名让学生完成口答。接下来我又出示了一组生活中常见的分数计算及应用题目,让学生分析、思考,并指名学生口头列式、上黑板演算,这样既复习旧知识,又为新授课作必要的铺垫引发。

  (三)导入新课:我采用题型变换的方式完成,指出“把复习2中的分数转化成百分数,就变成我们今天学习的新内容-----“求一个数的百分之几是多少的应用题”,出示问题,导出新课,并板书课题,以问题情景引出下一环节的学习。

  (四)探究新知:

  1、出示例4 ,引导学生独立思考后指名板演。让学生揭示数量关系,并在自己的练习本上解答,完成后集体订正并进行评价,使每个学生都能弄通学懂。这一环节要使每位学生都参与其中,以“学会”取代“教会”,突出学生的主体作用,使学生在轻松的心理状态下获取知识,并且激活学生的求知欲。

  2、与复习题2相比较,寻找相同点和不同点。在学生顺利完成例4后,及时引导学生分析比较例4和复习题2这两种类型应用题的相同点和不同点。先让学生小组合作讨论,然后指名回答,之后用课件展示比较结果------即相同点:单位“1”相同,解题思路相同。不同点:例4的第二个已知条件是用百分数表示,而复习 2第二个已知条件是用分数表示。这样安排,既突出本节课教学的重点,又拓展深化知识,同时也培养学生综合归纳、及其口头表达的能力。

  3、转换问题启发学生更深入地思考、作答。将例题改编成“求比一个数少百分之几的数是多少”的`应用题,引导学生解答。这是例题教学的进一步拓展,它是在刚学过“求一个数的百分之几是多少”的应用题后,抓住学生已有经验,引导学生作更深入的思考探索。激发学生学习兴趣,又启迪学生思维的灵活性。

  4、提出问题,引导学生对所学应用题解答思路、方法作总体上的归纳。让学生小组合作讨论,并指名回答之后,展示-------学习了“求一个数的百分之几是多少”。它和以前学习的“求一个数的几分之几是多少”的意义是相同的,在解答方法上也是一样的,都是用乘法来计算。在解答时要找准谁是单位“1”的量,谁是百分之几相对应的量。直接用:单位“1”的量×百分之几=百分之几相对应的量 (让学生齐读出来,加深印象。)

  (四)巩固练习:做93页“做一做”(一人板演,个别辅导,后集体订正。)基本教学任务完成后,出示练习题,组织学生进行课堂练习,使当堂学习的知识及时得以应用。这样既培养学生应用新知识解决实际问题的能力,又使学生进一步感受到学以致用的意义,增强了学习数学的信心。

  (五)总结评价:教者对当堂所学知识、题型特点、解答方法、注意事项等作归纳,对学生表现作出简要评价。并再次展示------学习了“求一个数的百分之几是多少”。它和以前学习的“求一个数的几分之几是多少”的意义是相同的,在解答方法上也是一样的,都是用乘法来计算。在解答时要找准谁是单位“1”的量,谁是百分之几相对应的量。直接用:

  单位“1”的量×百分之几=百分之几相对应的量,让学生再次齐读加深印象。

  (六)拓展延伸:通过组织有难度、有梯度的拔高练习,在分析解答过程中,培养学生一题多解的意识,培养学生发散性思维的能力。

  (七)作业布置:布置课本练习二十二第2.4题,要求学生课外完成

解决问题说课稿15

  说教学内容:教科书第59页的例5和相关的“做一做”。

  说教学目标:

  1.掌握用正比例的方法解答相关应用题。

  2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。

  3.培养学生分析问题、解决问题的能力。

  4.发展学生综合运用知识解决问题的能力。

  说教学重点:掌握用正比例的方法解答应用题。

  说教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

  说教法和学法:

  1.教法:创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。

  2.学法:理解分析与合作交流相结合。

  说教学准备:教学挂图、小黑板

  说教学过程:

  一、联系实际,复习迁移

  1.判断下面每题中的两种量成什么比例?并说明理由。

  (1)单价一定,总价和数量。

  (2)我们班学生做操,每行站的人数和站的行数。

  (3)速度一定,路程和时间。

  (4)每吨水的价钱一定,水费和用水的吨数。

  2.师:同学们,全社会都在节约用水,在和我们息息相关的.用水问题里也藏有数学问题。

  二、探索新知,培养能力

  1.教学例5

  (1)出示挂图:观察画面,说出题中告诉我们哪些信息?

  (2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?

  (3)提出:你能用以前学过的方法解答?

  (4)学生试着解答,并汇报解法。

  可能出现两种情况:生1:12.8÷8×10 生2:10÷8×12.8

  =1.6×10 =1.25×12.8

  =16(元) =16(元)

  (5)激励引新

  师:这两种方法都合理,还可以有什么方法解答呢?

  学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。今天我们就来学习用比例知识解答问题,引出课题,并板书:用比例解决问题

  (6)探讨新知

  提出问题,同桌讨论:题目中有哪两种相关联的量 ?它们成什么比例关系,为什么?根据这样的比例关系,你能列出等式吗?

  (7)引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。

  板书:解:设李奶奶家上个月的水费是X元。板书计算过程略

  (8)概括总结:象这样的题目,用比例解答应用题与算术方法解答应用题均可,如果题目中没有要求的,我们采用任何一种方法都可以,但如果题目要求用比例解的,就一定要用比例的方法解。

  2.变式练习。

  师:刚才我们用归一法和比例法帮李奶奶解决了水费问题,同学们真不简单,瞧!王大爷又遇到了什么问题?

  (1)出示条件:王大爷家上个月的水费是19.2元,它们家上个月用了多少吨水?

  (2)让学生用比例的知识解答改编后的题目。

  (3)指名板演,并说一说你是怎么想的?

  (4)比较一下改编后的题和例5有什么联系和区别?

  例5的条件和问题改编以后,题中成正比例的关系仍没有改变,解答的方法也没有改变,只是要设需要用的水数为X吨,列出等式是:12.8∶8=19.2∶X

  (5)想一想:怎样用比例解决问题?

  小结:用比例解决问题,应先分析题中的数量关系,判断相关联的两种量成什么比例关系,再根据问题中的等量关系列出方程,然后解方程。

  三、说巩固练习,形成技能。

  1.小黑板出示:一辆汽车2小时行驶140千米,照这样计算,从甲地到乙地共行驶5小时.甲乙两地之间的公路长多少千米?

  ① “照这样计算”就是说( )是一定的。

  ②( )和( )成( )比例。

  ③两次行驶的路程和时间的( )相等。

  ④根据这样的比例关系,请你列出方程。

  2.教科书第60页做一做第1题:让学生直接用比例知识解答。做完后,讨论并请同学说一说:你为什么这样列式?

  3.完成练习九第3题。师提醒:同一时间、同一地点的身高和影长成正比例。

  四、说全课总结。

  今天我们学习的是什么应用题,它的解答步骤是怎样的呢?

  五、说课后延伸,深化拓展 。

  一条公路全长1500米,一个工程队前3天修了600米,照这样计算,还需要多少天才能把这条公路修好?

【解决问题说课稿】相关文章:

《解决问题》教案05-19

牧童说课稿06-16

称赞说课稿06-21

叶公好龙说课稿09-22

咏柳说课稿07-08

守株待兔说课稿07-08

压强说课稿07-09

氧气说课稿07-04

英语说课稿07-05