数学说课稿

时间:2026-01-23 01:07:02 说课稿 我要投稿

【热门】数学说课稿模板汇总10篇

  作为一名为他人授业解惑的教育工作者,常常要写一份优秀的说课稿,借助说课稿可以让教学工作更科学化。那要怎么写好说课稿呢?下面是小编精心整理的数学说课稿10篇,欢迎阅读,希望大家能够喜欢。

【热门】数学说课稿模板汇总10篇

数学说课稿 篇1

  1、教材分析:

  新课程理念告诉我们:教师不仅是教材的执行者,更是课程资源的开发者和创造者,我们教师拥有开发课程资源、整合教材知识的权利和义务。所以我跟据初一新生的心理特点,借鉴“华师大”版及“苏教版”教材第一章的内容,把学生进入中学的第一节课特意设置为形式多样、轻松有趣的序言课,目的是让学生先消除对数学的惧怕心理,帮助他们做好中小学数学学习心理的衔接。通过这样一节课,我想让学生对数学有更深的认识,对今后将要学习的内容有一个初步的了解,并对数学产生兴趣和动力,让兴趣成为最好的老师,带动学生充满信心地投入到今后的学习中去。

  学情分析:(1)刚入中学的初一学生已了解和掌握了数与形方面的初步知识,但只具备一定的形象思维能力,抽象的思维能力还不具备;

  (2)学生个性活泼,对初中生活充满好奇,学习积极性高。

  2、教学目标设置

  知识目标:(1)通过实例,让学生认识到数学与现实世界的密切联系;

  (2)再借助于趣题解答和活动参与让学生再次回顾小学的知识方法,并对初中数学的.“数与代数”、“空间与图形”、“统计与概率”三块内容进行初步的感受和了解。

  能力目标:让学生经历动手试验的过程,引导从数学的角度提出问题、解决问题,培养学生观察、思考的习惯和学数学、用数学的意识。

  情感目标:让学生懂得数学的价值、感受数学的魅力、激发学习的兴趣、引发求知的欲望,从数学的重要性和数学家的故事中树立学好数学的自信心。

  3、教学策略

  (1)教法——充分调动学生的积极主动性,以“引导思考”为核心,边启发、边分析、边观察、边总结,让学生在轻松的气氛中与数学交朋友;

  (2)学法——采用知识内容的趣味化形式,吸引学生乐学,用问题的生活化情境,让每个学生都有感而发,再用类比、猜想、验证、化归等数学思想方法的应用引导学生会学;

  (3)教学手段——借助多媒体,更好的展示数学的魅力,充分调动学生的感官,使学生积极主动的参与活动,成为课堂的主人。

  4、重难点分析(放在后面说)

  教学重点:通过大量的实例,让学生认识到数学很重要、很有用,虽然有点难,但它很有趣,并能很好的锻炼一个人的思维。这节课就是要设法改变学生以往对数学的印象,化枯燥为趣味、化理论为实用、化复杂为简单,让学生真正的爱上数学。

  教学难点:突破方式是通过问题点化、课件点拨、动手实验等方法引导学生发现问题、提出问题、解决问题,并注重引导学生进行数学地思考和自主的探索。

  5、教学过程与方法

  由于本节课没有专门的知识点和特别要学生掌握的方法,所以教学过程主要采用师生互动和生生互动的形式,让学生进行充分的交流。

  教学

  环节

  教学程序与方法

  设计意图

  提出问题创设情境

  1、给出英国数学家克莱茵形容数学的名言:

  音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,而数学能给予以上的一切。

  2、、问题:数学是什么?

  让同学们用一个或几个词语描绘数学在自己眼中留下的印象,联系生活、讨论交流

  3、问题引出“数学超市”内容,根据往届学生的答案,事先设置好十个不同板块,用课件展示出来:测量、想象力、真有趣、有点难、拼折图、数学家、运用广泛、开发思维、有挑战性、其乐无穷

  了解数学家眼中的数学是具有神奇力量的,激发学生对数学的一种向往。

  从一个熟悉而又陌生的问题开始,鼓励学生大胆表达自己的想法,激发学生的学习热情。

  创造机会让学生交流、讨论,消除彼此间的陌生感,同时通过老

  师和蔼可亲、循循善诱的教态消除学生对中学老师的惧怕心理,达到“亲其师而信其道”的目的。

  每个四人小组派一名学生代表点击“我眼中的数学”不同板块,全班同学根据板块所对应的内容,展开讨论和提出方案,进入本节课的互动环节。

  互动环节

  让每个小组随意点击“数学超市”

  的不同板块,根据板块对应的内容,让全班同学或参与设置的活动;或进行相应的游戏;或独立思考、自主探究;或合作

  交流、相互启发;用多种形式引导学生感受数学在生活中的广泛应用,从不同角度体验数学的思维方法。

  所有板块都是从“数与代数”、“空间与图形”、

  “统计与概率”三个方面提供的素材,目的是让学生对今后要学习的内容有一个初步的了解和感受。

  (课堂上提供给学生学习的内容和活动的素材从以下三个方面进行归类:“数与代数”、“空间与图形”、“统计与概率”)

数学说课稿 篇2

  教材分析

  《两位数加一位数(进位)》是义务教育课程标准实验教科书数学(西南师大版)下册第六单元《100以内的加法和减法》(二)的内容。

  百以内加法计算分20以内进位加法,百以内不进位加法及百以内进位加法三个阶段。学生经过加和减(一)的学习,已经能够比较熟练地口算两位数与一位数相加(不进位),在此基础上,教学需要进位的两位数加一位数的加法口算。

  学生分析

  在学习本课内容之前,学生已明白了相同数位对齐、满十进位的道理,如果将多样化的学习情境呈现给学生,学生完全有可能通过知识的综合、迁移,自主学习掌握这一新知识。为了解学生已有的知识和经验。教学目标

  基于上述班级实际情况,掌握两位数加一位数(进位)的口算方法,能用数学语言表述口算思维过程,提高学生的计算能力这一知识目标达成并非是本班全体学生所需要,而是要通过不同形式的学习使不同水平的学生在原有基础上得到不同的提高,引导学生饶有兴趣地主动参与数学活动,让学生在解决简单的实际问题过程中,进一步体验数学与生活的联系,增强数学意识,并在合作交流中能用数学语言表达自己的想法,发展他们的数学思维。

  设计理念

  儿童是在与周围环境相互作用的过程中,逐步构建起关于外部世界的知识,从而使自身知识结构得到发展。所以,动手实践、自主探索、合作交流应成为学生学习数学的重要方式。本课设计是以建构主义理论为指导,着重从问题情境、自主学习、信息资源、协作学习环境和学习效果评价等方面进行认真探索,从而为“自主建构性”学习方式的研究积累经验。

  教学流程

  一、课前谈话。

  师:今天我们按小组形式来开展相互讨论交流的学习。第1小组由××、××等6位同学和老师7个人组成,其他小组由两个小朋友成。比一比,哪个小组学得好,表现最出色。

  二、创设情景。

  1、创设情景:停车场(例1)

  (屏幕上动画显示)星期三下午,小明和小红来到停车场,小红数出停车场里面有8辆客车,小明数出停车场里面有27辆货车。

  师:“小朋友你能提出什么数学问题?”

  学生讨论。然后请学生回答。

  生1:“客车比货车少几辆?”

  生2:“货车比客车多几辆?”

  生3:“一共有多少辆车?”

  ………..

  2、反馈。

  师:“一共有多少辆车?你们会列出算式吗?”

  生:“278=”

  师:“你能说出为什么这样列式吗?”

  生:“……….”

  师:“说的真好,可是这个算式的结果是多少呢?又应该怎样计算呢?请小朋友在小组里讨论讨论,一会儿我们比一比,看哪组的小朋友想的方法又多又好?”

  3、反馈计算方法。

  师:“哪一个小组愿意第一个汇报你们的成果呢?”

  生1:“我是用摆小棒的方法…………?”

  生2:“我们是把8分成3和5,先算273=30,再算305=35。”

  生3:“我是先算87=15,再算20xx=35。”

  生4:“我是用竖式计算的?”

  师:“你能说一说用竖式计算要注意什么吗?你能上台来演示给大家看吗?

  生边说边演示,学生观看。

  学生结束后,师重复讲解并板演。并强调:

  1)列竖式时要相同数位对齐;

  2)从个位加起,满十进一;

  3)个位计算完后,再算十位上的数。

  4、例2:算一算。

  刚才你们表现得真不错,现在你们能用学到的知识帮助老师解决一道难题吗?(板书例2:975=)

  学生小组讨论算法。

  5、反馈计算方法。

  生1:“我们这一组是用摆小棒的方法……..”

  生2:“我们是把9分成4和5,先算575=80,再算804=84。”

  生3:“我们是95=14,再算7014=84。”

  生4:“我们是用竖式计算的。”………

  (师在学生说的时候,进行板演)

  师:“感谢大家想出这么多的方法帮助老师解决了难题,现在进行一个小型的计算比赛,看谁计算得最快!

  三、学习反馈。

  549=268=742=379=

  822=564=387=637=

  四、小结、

  今天大家的表现让老师很满意。小朋友们,你们能说说你学到了什么?

  本课安排了分层教学,第1小组的学生未能操作计算机,心情不是愉快的,教师在这里安排让第1小组学生当小老师的教学环节,由第1小组分别提出想怎样买,请他指名一位同学来回答。给了第1小组学生表演的机会,提高了他们学习的积极性,保护了他们的自尊心。

  五、实践应用。

  师:(在大屏幕上用多媒体显示玩具商店一些玩具及价格)玩具熊9元,玩具娃娃16元,小汽车25元,皮球4元,积木38元。现在,如果给你50元钱让你买玩具,你会怎样买,并说说理由。

  (学生分组讨论后,大组交流,每有一种正确的购物方案可获一朵小红花。)

  评析

  从本课的教学可以看出,教师能将情境教学、建构主义心理学以及计算机技术运用于本课的设计,不仅考虑教学内容、教学环节等设计,更注重学生学习环境、学习资源、学习活动、学习评价等方面的设计。从整体规划教学过程,为学生学习开发良好的环境。

  1.注重问题情境设计。将学生学习活动与生活世界相连,本课先设计小明和妈妈到商店购买玩具的情景,提出需要解决的初始问题和步步深入的后续问题,让学生在计算机、老师的帮助下,通过选玩具、尝试计算、交流反馈、理解巩固等活动自主学习,探索解决问题的办法。最后又设计了购买玩具的实践应用活动,通过小组讨论、交流,提高学生应用知识解决问题的能力和学习数学的兴趣。

  2.注重信息资源设计。信息资源是支持学生主题学习的重要因素。本课为学生提供了以下信息资源:(1)体现个别化教育思想的交互式学习课件,使已能口算的22位学生进行人机对话式的.自主学习活动。(2)可供学生操作的帮助学生理解“满十进一”道理的小棒。(3)两人一组配一台电脑。(4)标有玩具价格的多媒体显示图片。每种资源在相应的学习过程中发挥了有效的作用。

  3.注重自主学习设计。教师在课前调查班内学生原有知识经验背景基础上,把28位学生分为12组,有11个组的学生进行计算机对话自主学习,一个组在老师的帮助下开展学习。计算机小组的学生,按要求选择玩具,列式计算并组内交流,必要时求助计算机个别指导或教师帮助,充分体现了因材施教原则应用的实效性。

  4.注重协作学习环境设计。计算机小组的学生,既有计算机提供初始问题和步步深入的后续问题下的人机对话的交流(包括计算机提供帮助),又有两学生之间协商交流,必要时还有教师的介入,三者相辅相成,学生在知识、技能、情感、合作意识等方面达到了同步发展。在实践应用活动中围绕用50元钱怎样购买玩具这个主题,学生分小组进行讨论,对于学生在讨论过程中的表现,教师适时作出恰如其分的评价,激励学生积极参与合作学习。

  5.注重学习效果评价设计。教学中分别对小组学习成效、小组合作情况及个人学习情况三方面评价。对小组学习成效评价,分列出算式、答对题数和设计购物方案数三方面评价(获小红花的朵数)。对小组合作情况的评价从合作的意识及态度两方面进行。小组对个人的评价分专心倾听、积极发言和思维创新三方面进行。优化的评价,激活了课堂,促进了学生生动活泼、全面和谐地发展

数学说课稿 篇3

  教学目标

  1.理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题.

  2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.

  3.渗透运动和时间变化的辩证关系.

  教学重点

  掌握求路程的相遇问题的解题方法.

  教学难点

  理解相遇问题中时间和路程的特点.

  教学过程

  一、以旧引新

  (一)口答列式,并说明理由.

  1.一辆汽车每小时行60千米,4小时行多少千米?

  2.一辆汽车4小时行了240千米,每小时行多少千米?

  3.一辆汽车每小时行60千米,行驶240千米需要几小时?教师板书:速度×时间=路程

  (二)创设情境

  1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”

  2.小组集体讨论

  (1)张华送到李诚家;

  (2)李诚来张华家取走;

  (3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.

  3.认识相遇问题

  (1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?(同时,从两地,相对而行)

  (2)两个人之间的距离有什么变化?(越来越近,最后变为零)教师指出:当两个人的距离为零时,称为“相遇”

  具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”板书课题:相遇问题

  (三)出示准备题:

  张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米.

  根据已知条件填写下表

  走的时间

  张华走的路程60米

  李诚走的路程70米

  两人所走路程的和

  现在两人的距离

  1分

  60米

  70米

  2分···

  3分···

  思考:

  1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)

  2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)

  二、教学新课

  (一)教学例3

  小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?

  1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.请同学解释这两个词的`含义.

  2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)

  3.由学生尝试解答例3

  4.结合线段图订正答案.

  方法一:65×4+70×4 方法二:(65+70)×4

  =260+280=135×4

  =540(米) =540(米)

  速度和×相遇时间=路程

  5.比较

  (1)两种算法哪一种比较简便?

  (2)两种算法之间有什么联系?

  三、巩固练习

  (一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?

  (二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米?

  讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?板书:出发地点:两地

  出发时间:同时

  运动方向:相向(相对、对面)

  运动结果:相遇

  (三)两只轮船同时从上海和武汉相对开出.从武汉出发的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?

  (四)两辆汽车同时从一个地方向相反方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.经过3小时,两车相距多少千米?

  1.由学生用手势表述题意.

  2.比较:与前面题目相比,有什么不同?又有什么共同之处?

  (五)甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米.

  甲车开出后1小时,乙车才开出,再经过2小时相遇.两地间的铁路长多少千米?

  1.由学生用手势语言向同组同学介绍题意.

  2.由学生独立解答

  3.出示四种不同解法,请同学小组讨论并做出判断.

  方法一:75×1+75×2+69×2 方法二:75×(1+2)+69×2方法三:75×1+(75+69)×2 方法四:(75+69)×(2+1)

  四、课堂小结

  通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?

  (相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动??)今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?

  怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?请同学们在课下思考?

  五、课后作业

  (一)两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时相遇,上海到武汉的航路长多少千米?

  (二)两辆汽车同时从一个地方向相反的方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.过3小时,两车相距多少千米?

数学说课稿 篇4

  一、 地位和作用:

  本节内容处于数学北师大版六年级上册第三章最后一节.从这一章开始利用字母表示数(即符号化),它深刻揭示存在于一类实际问题中的共性.有助于人们对显示世界的认识,它的各种表示方法(如公式法、表格法、图象法等),不仅为解决实际问题提供了重要策略,而且为数学交流提供了有效的途径,它的模型化方法、函数思想以及推理的方法也为数学本身和其它学科的研究提供了基础.

  二、 教学目标:

  根据《课标》中“强调学生的数学活动,发展学生的数感、符号感及应用意识”确定了如下的知识目标和能力目标:

  1.经历探索数量关系,运用符号表示规律,通过运算、验证规律的过程.

  2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律.

  3.提高学生分析问题、解决问题的能力.

  根据“义务教育阶段的数学课程的出发点是促进学生全面、持续、和谐地发展”确定了如下的情感目标:通过学生动手、动脑、利用转化、类比的方法去探索、培养学生的观察能力、交往协作能力、动手操作能力、归纳概括能力、创新能力.

  三.教材重点、难点的'确定.

  根据“材设计关注的是学生是否理解字母表示的含义,能否用字母表示和能否积极从事数量关系的探索过程”,从而确定了教学重点是能将探索发现数学规律并能正确验证.对于刚刚接触用字母表示数的学生来说,整个过程需要大胆进行探索、猜想、归纳、验证等能力的培养比较困难,因此发现数学规律也是本节的教学难点.

  如何突出重点和难点71页

  教法:根据本节课的特点,采用探究式的教学法.

  学法:根据初一学生知识储备量小、学生性格好动的特点,采用分组、合作、交流的学习方法.

  四.教学流程:

  1.巧用情景引入课题,通过儿歌“一只青蛙一张嘴,两只眼睛四条腿;两只青蛙两张嘴,四只眼睛八条腿…”引出问题“n只青蛙几张嘴,几只眼睛几条腿?”从中鼓励学生发现规律,尝试用字母符号表达规律.

  2.讲授新课:首先出示某年某月的日历,然后根据问题探讨日历中的规律.由于这是本节的重点和难点,根据学生情况,为了突破难点,对于课本的编排从新调整.提出了如下的几个问题:①日历中同一行中连续三个数之间有什么关系?②日历中同一列中相邻三个数之间有什么关系?③日历中斜着的三个数之间有什么关系?④用长方形框住的四个数有什么关系?⑤用正方形框住的九个数有什么关系?先让学生用具体的数来回答问题,然后上升到用字母来反映规律.从而让学生体会由特殊到一般的方法。

  教师评价:71页另外教师不断鼓励学生发现、表达、合理解释.

  以上主要采用教师启发引导式的方法.

  其次,让学生动手折纸完成课后随堂练习第2题,目的是换一种活动方式.本题主要由学生独立完成.

  最后,通过以上的日历、折纸,对学生分组完成做一做.本题采用分组合作的方式进行.

  五. 学情预测:

  优点:问题的层次递进符号学生的实际情况.

  缺点:规律找到但是表达不准或不正确,如去括号问题,另外缺乏验证.

  针对缺点采用的弥补方法是:适当布置有关去括号知识的问题,强调规律探索中的验证这一环节的重要性和必要性.

  六.总结反思和理念:

  探索规律要用到归纳、推理,它是一种重要的数学思维方法,数学史上的一些发现如哥德巴赫猜想等都是通过探索、总结、猜想而得到的,但是要注意猜想的验证。

数学说课稿 篇5

  各位评委、各位老师:

  大家下午好!

  我说课的内容是《切线的判定》。我将从教材分析、学情分析、目标重难点分析、教法学法分析、教学过程、教学评价六个方面阐述我对本节课的设计意图。

  一、教材分析

  1、教材的地位和作用

  本节内容选自九下第三章《圆》第五节《直线和圆的位置关系》的第二课时《切线的判定》。本课时内容是在学习了直线与圆的位置关系的基础上,进一步探究直线和圆相切的条件,并为探究切线长定理和切割线定理而作准备的,它在圆的学习中起着承上启下的作用,在整个初中几何学习中起着桥梁和纽带的作用。因此,它是几何学习中必不可少的知识工具。

  2、本课主要知识点

  (1)判定一条直线是否为圆的切线

  (2)过圆上一点画圆的切线。

  (3)作三角形的内切圆。

  3、教材整改

  结合教学实际及中考要求,我对教材内容略作了调整。当探究出判定后,为了提高学生将所学的知识应用于实际,我特增加了例1和例2,让学生总结出"证明一条直线是圆的切线时,常常添加辅助线的两种方法",帮助学生进一步深化理解切线的判定定理,达到学以致用。

  同时我对学案也作了调整。将在后面的学习过程中得以具体的体现。

  二、学情分析

  1、已有的知识能力

  学生已经掌握了等边三角形的性质,直角三角形的性质,圆周角的知识,与圆有关的性质,切线的定义,切线的性质等。

  2、已有的数学能力

  具有初步的逻辑推理能力和基本的作图能力等。

  3、已有的学习能力

  预习能力、小组合作能力、讲解能力、概括总结能力,评价能力等。

  三、目标、重难点分析

  基于上述情况,结合《新课程标准》和我校学生的实际情况,特制定了如下教学目标。(一)目标分析

  1、知识与技能

  (1)能判定一条直线是否为圆的切线。

  (2)会过圆上一点画圆的切线。

  (3)会作三角形的内切圆。

  2、过程与方法

  (1)通过判定一条直线是否为圆的切线,训练学生的推理判断能力。

  (2)会过圆上一点画圆的切线,训练学生的作图能力。

  3、情感态度与价值观

  (1)经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点。

  (2)经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题。

  设计意图:学习目标是在对教材分析和学情分析基础上设定,它的设定一定既符合大纲的知识、能力要求,又要平行你的学生的能力水平。因此,承上:它起着承载知识的生长点以及与旧知识的联系;还要联系学生已有的知识、能力和方法,这些目标针对你的学生一定是最能实现和达到的;启下:它起着教师对教学过程设计中的起点在何处,这个起点是否针对了你自己将要面对的本堂课的学生,是否符合所教学生的认知特点和心理特点。还决定了你的整个教学设计如何来落实完成知识、发展过程、突破能力。

  本课时内容都是围绕切线的判定来展开的.,根据教学目标及学生的实际情况,制定了如下重难点:

  (二)重难点分析

  1、教学重点:

  探索圆的切线的判定方法,并能运用。

  突出措施:学生通过所选取的四个图形,以问题链的形式,并结合已学过的直线与圆的位置关系及切线的定义,以小组内交流,组间互评,老师点评等形式得出判定。并全班齐读判定,勾画圈点关键词。并让学生回顾切线判定的另外两种方法,加深对判定的理解记忆。

  2、教学难点:

  由于圆这一章内容平时生活中见得比较少,切线又比较抽象,所以基于学情我确定如下为教学难点。

  探索圆的切线的判定方法。

  作三角形内切圆的方法。

  突破措施:主要通过将问题细化,通过在学习准备中提前抛出问题,通过学生分组学习、练习、学生板演、学生讲解等方式突破难点。

  四、教法与学法分析:

  教法上:我主要采用以学案为载体的DJP教学模式,充分发挥学生的主观能动性。以学生自主学习为主,教师引导学生自主探究,并帮助学生课堂讲解,并赋以合理的评价,激发学生的学习兴趣,调动学生课堂积极性。同时还结合了启发、讲解、评价综合的教法。

  学法上:充分发挥小组作用,采取合作学习的形式,在小组内进行交流、讨论、讲解,再面向全班讲解,让学生自主学习,构建知识体系。

  五、教学过程

  本节课采用以学案导学的DJP教学模式,这种教学模式主要有以下六个环节:

  教学活动设计如下:

  【达标检测】

  1、判断直线l是否是⊙O的切线,并说明理由。

  2、如右图,∠AOB=30° ,M为OB上任意一点,以M为圆心,

  2cm为半径作⊙M,则当OM=________时,OM与OA相切。

  3、如右图,AB是⊙O的直径,∠ABT=45° ,AT=AB.

  求证:AT是⊙O的切线。

  4、如右图:已知直线AB经过圆O上的点C, 并且OA=OB,CA=CB, 求证:直线AB是圆O的切线。

  设计意图:

  (1)、为了检测学生对本节课知识的掌握情况,教师及时反馈了解学生的学习效果。

  (2)、为学习下一课时的内容作知识准备。

  (五)课后作业

  C类: ①课本P129随堂练习2

  ②课本P129习题1

  B类: ①课本P129随堂练习1,2

  ②课本P129习题1,2

  A类: ①课本P129随堂练习2

  ②课本P129习题1,2,试一试

  ③上网查阅整理切线在判定在相关资料,特别是在生活中的应用。

  设计意图:

  设计意图:作业分层布置,在完成达标的基础上拓宽和加深,加强学生综合能力和创造才能的培养。也是尊重学生个体差异的表现。

  (六)板书设计

  优美清晰、图象规范、色彩艳丽的幻灯片,不能代替规范的板书,它从静态体现知识之间的联系,有利于知识的系统化。故而设计板书如下:

  §3.8 切 线 的 判 定

  一、切线的三种判定方法:

  1、直线与圆只有唯一的公共点;

  2、圆心到一条直线的距离等于半径,这条直线是圆的切线;

  3、过半径的外端并且与半径垂直的直线与圆相切

  二、内切圆的定义三、反思小结

  五、教学反思

  本节课针对学生已有的知识技能和活动经验,在学案的具体运用中,课前预习学案,让学生有足够的时间独立学习、思考完成学案,为小组讨论交流、展示讲解做充分地准备。教师可以通过检查学案或小组统计等方式了解学生依案自学的情况,有针对性的精讲。为了更好的发挥学案的作用,充分调动学生的学习积极性,我还借助小组的量化评价体系,给每个小组打分。

  设计意图:

  学案能够帮助学生课前自学、课堂学习、课后复习,是教师启发、引导、讲解、指导学生数学学习的工具与方案。

数学说课稿 篇6

  教材内容

  1.本单元教学的主要内容:

  二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。

  2.本单元在教材中的地位和作用:

  二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。

  教学目标

  1.知识与技能

  (1)理解二次根式的概念。

  (2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0)。

  (3)掌握 ? = (a≥0,b≥0), = ? ;

  = (a≥0,b>0), = (a≥0,b>0)。

  (4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。

  2.过程与方法

  (1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

  (2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。

  (3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。

  (4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。

  3.情感、态度与价值观

  通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。

  教学重点

  1.二次根式 (a≥0)的内涵。 (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用。

  2.二次根式乘除法的规定及其运用。

  3.最简二次根式的概念。

  4.二次根式的加减运算。

  教学难点

  1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用。

  2.二次根式的乘法、除法的条件限制。

  3.利用最简二次根式的概念把一个二次根式化成最简二次根式。

  教学关键

  1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。

  2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。

  单元课时划分

  本单元教学时间约需11课时,具体分配如下:

  21.1 二次根式 3课时

  21.2 二次根式的乘法 3课时

  21.3 二次根式的加减 3课时

  教学活动、习题课、小结 2课时

  21.1 二次根式

  第一课时

  教学内容

  二次根式的概念及其运用

  教学目标

  理解二次根式的概念,并利用 (a≥0)的意义解答具体题目。

  提出问题,根据问题给出概念,应用概念解决实际问题。

  教学重难点关键

  1.重点:形如 (a≥0)的式子叫做二次根式的概念;

  2.难点与关键:利用" (a≥0)"解决具体问题。

  教学过程

  一、复习引入

  (学生活动)请同学们独立完成下列三个问题:

  问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

  问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

  问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

  老师点评:

  问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , )。

  问题2:由勾股定理得AB=

  问题3:由方差的概念得S= .

  二、探索新知

  很明显 、 、 ,都是一些正数的算术平方根。像这样一些正数的算术平方根的式子,我们就把它称二次根式。因此,一般地,我们把形如 (a≥0)的式子叫做二次根式," "称为二次根号。

  (学生活动)议一议:

  1.-1有算术平方根吗?

  2.0的算术平方根是多少?

  3.当a<0, 有意义吗?

  老师点评:(略)

  例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0)。

  分析:二次根式应满足两个条件:第一,有二次根号" ";第二,被开方数是正数或0.

  解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .

  例2.当x是多少时, 在实数范围内有意义?

  分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义。

  解:由3x-1≥0,得:x≥

  当x≥ 时, 在实数范围内有意义。

  三、巩固练习

  教材P练习1、2、3.

  四、应用拓展

  例3.当x是多少时, + 在实数范围内有意义?

  分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.

  解:依题意,得

  由①得:x≥-

  由②得:x≠-1

  当x≥- 且x≠-1时, + 在实数范围内有意义。

  例4(1)已知y= + +5,求 的值。(答案:2)

  (2)若 + =0,求a20xx+b20xx的值。(答案: )

  五、归纳小结(学生活动,老师点评)

  本节课要掌握:

  1.形如 (a≥0)的式子叫做二次根式," "称为二次根号。

  2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

  六、布置作业

  1.教材P8复习巩固1、综合应用5.

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第一课时作业设计

  一、选择题 1.下列式子中,是二次根式的是( )

  A.- B. C. D.x

  2.下列式子中,不是二次根式的是( )

  A. B. C. D.

  3.已知一个正方形的面积是5,那么它的边长是( )

  A.5 B. C. D.以上皆不对

  二、填空题

  1.形如________的式子叫做二次根式。

  2.面积为a的正方形的边长为________.

  3.负数________平方根。

  三、综合提高题

  1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

  2.当x是多少时, +x2在实数范围内有意义?

  3.若 + 有意义,则 =_______.

  4.使式子 有意义的未知数x有( )个。

  A.0 B.1 C.2 D.无数

  5.已知a、b为实数,且 +2 =b+4,求a、b的值。

  第一课时作业设计答案:

  一、1.A 2.D 3.B

  二、1. (a≥0) 2. 3.没有

  三、1.设底面边长为x,则0.2x2=1,解答:x= .

  2.依题意得: ,

  ∴当x>- 且x≠0时, +x2在实数范围内没有意义。

  3.

  4.B

  5.a=5,b=-4

  21.1 二次根式(2)

  第二课时

  教学内容

  1. (a≥0)是一个非负数;

  2.( )2=a(a≥0)。

  教学目标

  理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简。

  通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题。

  教学重难点关键

  1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用。

  2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0)。

  教学过程

  一、复习引入

  (学生活动)口答

  1.什么叫二次根式?

  2.当a≥0时, 叫什么?当a<0时, 有意义吗?

  老师点评(略)。

  二、探究新知

  议一议:(学生分组讨论,提问解答)

  (a≥0)是一个什么数呢?

  老师点评:根据学生讨论和上面的练习,我们可以得出

  (a≥0)是一个非负数。

  做一做:根据算术平方根的意义填空:

  ( )2=_______;( )2=_______;( )2=______;( )2=_______;

  ( )2=______;( )2=_______;( )2=_______.

  老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.

  同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

  ( )2=a(a≥0)

  例1 计算

  1.( )2 2.(3 )2 3.( )2 4.( )2

  分析:我们可以直接利用( )2=a(a≥0)的结论解题。

  解:( )2 = ,(3 )2 =32?( )2=32?5=45,

  ( )2= ,( )2= .

  三、巩固练习

  计算下列各式的值:

  ( )2 ( )2 ( )2 ( )2 (4 )2

  四、应用拓展

  例2 计算

  1.( )2(x≥0) 2.( )2 3.( )2

  4.( )2

  分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

  (4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

  所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题。

  解:(1)因为x≥0,所以x+1>0

  ( )2=x+1

  (2)∵a2≥0,∴( )2=a2

  (3)∵a2+2a+1=(a+1)2

  又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

  (4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

  又∵(2x-3)2≥0

  ∴4x2-12x+9≥0,∴( )2=4x2-12x+9

  例3在实数范围内分解下列因式:

  (1)x2-3 (2)x4-4 (3) 2x2-3

  分析:(略)

  五、归纳小结

  本节课应掌握:

  1. (a≥0)是一个非负数;

  2.( )2=a(a≥0);反之:a=( )2(a≥0)。

  六、布置作业

  1.教材P8 复习巩固2.(1)、(2) P9 7.

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第二课时作业设计

  一、选择题

  1.下列各式中 、 、 、 、 、 ,二次根式的个数是( )。

  A.4 B.3 C.2 D.1

  2.数a没有算术平方根,则a的取值范围是( )。

  A.a>0 B.a≥0 C.a<0 D.a=0

  二、填空题

  1.(- )2=________.

  2.已知 有意义,那么是一个_______数。

  三、综合提高题

  1.计算

  (1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2

  (5)

  2.把下列非负数写成一个数的平方的形式:

  (1)5 (2)3.4 (3) (4)x(x≥0)

  3.已知 + =0,求xy的值。

  4.在实数范围内分解下列因式:

  (1)x2-2 (2)x4-9 3x2-5

  第二课时作业设计答案:

  一、1.B 2.C

  二、1.3 2.非负数

  三、1.(1)( )2=9 (2)-( )2=-3 (3)( )2= ×6=

  (4)(-3 )2=9× =6 (5)-6

  2.(1)5=( )2 (2)3.4=( )2

  (3) =( )2 (4)x=( )2(x≥0)

  3. xy=34=81

  4.(1)x2-2=(x+ )(x- )

  (2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )

  (3)略

  21.1 二次根式(3)

  第三课时

  教学内容

  =a(a≥0)

  教学目标

  理解 =a(a≥0)并利用它进行计算和化简。

  通过具体数据的解答,探究 =a(a≥0),并利用这个结论解决具体问题。

  教学重难点关键

  1.重点: =a(a≥0)。

  2.难点:探究结论。

  3.关键:讲清a≥0时, =a才成立。

  教学过程

  一、复习引入

  老师口述并板收上两节课的重要内容;

  1.形如 (a≥0)的'式子叫做二次根式;

  2. (a≥0)是一个非负数;

  3.( )2=a(a≥0)。

  那么,我们猜想当a≥0时, =a是否也成立呢?下面我们就来探究这个问题。

  二、探究新知

  (学生活动)填空:

  =_______; =_______; =______;

  =________; =________; =_______.

  (老师点评):根据算术平方根的意义,我们可以得到:

  =2; =0.01; = ; = ; =0; = .

  因此,一般地: =a(a≥0)

  例1 化简

  (1) (2) (3) (4)

  分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,

  (4)(-3)2=32,所以都可运用 =a(a≥0)去化简。

  解:(1) = =3 (2) = =4

  (3) = =5 (4) = =3

  三、巩固练习

  教材P7练习2.

  四、应用拓展

  例2 填空:当a≥0时, =_____;当a<0时, =_______,并根据这一性质回答下列问题。

  (1)若 =a,则a可以是什么数?

  (2)若 =-a,则a可以是什么数?

  (3) >a,则a可以是什么数?

  分析:∵ =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使"( )2"中的数是正数,因为,当a≤0时, = ,那么-a≥0.

  (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知 =│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.

  解:(1)因为 =a,所以a≥0;

  (2)因为 =-a,所以a≤0;

  (3)因为当a≥0时 =a,要使 >a,即使a>a所以a不存在;当a<0时,>a,即使-a>a,a<0综上,a<0

  例3当x>2,化简 - .

  分析:(略)

  五、归纳小结

  本节课应掌握: =a(a≥0)及其运用,同时理解当a<0时, =-a的应用拓展。

  六、布置作业

  1.教材P8习题21.1 3、4、6、8.

  2.选作课时作业设计。

  3.课后作业:《同步训练》

  第三课时作业设计

  一、选择题

  1. 的值是( )。

  A.0 B. C.4 D.以上都不对

  2.a≥0时, 、 、- ,比较它们的结果,下面四个选项中正确的是( )。

  A. = ≥- B. > >-

  C. < <- d.-=""> =

  二、填空题

  1.- =________.

  2.若 是一个正整数,则正整数m的最小值是________.

  三、综合提高题

  1.先化简再求值:当a=9时,求a+ 的值,甲乙两人的解答如下:

  甲的解答为:原式=a+ =a+(1-a)=1;

  乙的解答为:原式=a+ =a+(a-1)=2a-1=17.

  两种解答中,_______的解答是错误的,错误的原因是__________.

  2.若│1995-a│+ =a,求a-19952的值。

  (提示:先由a-20xx≥0,判断1995-a的值是正数还是负数,去掉绝对值)

  3. 若-3≤x≤2时,试化简│x-2│+ + .

  答案:

  一、1.C 2.A

  二、1.-0.02 2.5

  三、1.甲 甲没有先判定1-a是正数还是负数

  2.由已知得a-20xx≥0,a≥20xx

  所以a-1995+ =a, =1995,a-20xx=19952,

  所以a-19952=20xx.

  3. 10-x

  21.2 二次根式的乘除

  第一课时

  教学内容

  ? = (a≥0,b≥0),反之 = ? (a≥0,b≥0)及其运用。

  教学目标

  理解 ? = (a≥0,b≥0), = ? (a≥0,b≥0),并利用它们进行计算和化简

  由具体数据,发现规律,导出 ? = (a≥0,b≥0)并运用它进行计算;利用逆向思维,得出 = ? (a≥0,b≥0)并运用它进行解题和化简。

  教学重难点关键

  重点: ? = (a≥0,b≥0), = ? (a≥0,b≥0)及它们的运用。

  难点:发现规律,导出 ? = (a≥0,b≥0)。

  关键:要讲清 (a<0,b<0)= ,如 = 或 = = × .

  教学过程

  一、复习引入

  (学生活动)请同学们完成下列各题。

  1.填空

  (1) × =_______, =______;

  (2) × =_______, =________.

  (3) × =________, =_______.

  参考上面的结果,用">、<或="填空。

  × _____ , × _____ , × ________

  2.利用计算器计算填空

  (1) × ______ ,(2) × ______ ,

  (3) × ______ ,(4) × ______ ,

  (5) × ______ .

  老师点评(纠正学生练习中的错误)

  二、探索新知

  (学生活动)让3、4个同学上台总结规律。

  老师点评:(1)被开方数都是正数;

  (2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。

  一般地,对二次根式的乘法规定为

  ? = .(a≥0,b≥0)

  反过来: = ? (a≥0,b≥0)

  例1.计算

  (1) × (2) × (3) × (4) ×

  分析:直接利用 ? = (a≥0,b≥0)计算即可。

  解:(1) × =

  (2) × = =

  (3) × = =9

  (4) × = =

  例2 化简

  (1) (2) (3)

  (4) (5)

  分析:利用 = ? (a≥0,b≥0)直接化简即可。

  解:(1) = × =3×4=12

  (2) = × =4×9=36

  (3) = × =9×10=90

  (4) = × = × × =3xy

  (5) = = × =3

  三、巩固练习

  (1)计算(学生练习,老师点评)

  ① × ②3 ×2 ③ ?

  (2) 化简: ; ; ; ;

  教材P11练习全部

  四、应用拓展

  例3.判断下列各式是否正确,不正确的请予以改正:

  (1)

  (2) × =4× × =4 × =4 =8

  解:(1)不正确。

  改正: = = × =2×3=6

  (2)不正确。

  改正: × = × = = = =4

  五、归纳小结

  本节课应掌握:(1) ? = =(a≥0,b≥0), = ? (a≥0,b≥0)及其运用。

  六、布置作业

  1.课本P15 1,4,5,6.(1)(2)。

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第一课时作业设计

  一、选择题

  1.若直角三角形两条直角边的边长分别为 cm和 cm,那么此直角三角形斜边长是( )。

  A.3 cm B.3 cm C.9cm D.27cm

  2.化简a 的结果是( )。

  A. B. C.- D.-

  3.等式 成立的条件是( )

  A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1

  4.下列各等式成立的是( )。

  A.4 ×2 =8 B.5 ×4 =20

  C.4 ×3 =7 D.5 ×4 =20

  二、填空题

  1. =_______.

  2.自由落体的公式为S= gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.

  三、综合提高题

  1.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?

  2.探究过程:观察下列各式及其验证过程。

  (1)2 =

  验证:2 = × = =

  = =

  (2)3 =

  验证:3 = × = =

  = =

  同理可得:4

  5 ,……

  通过上述探究你能猜测出: a =_______(a>0),并验证你的结论。

  答案:

  一、1.B 2.C 3.A 4.D

  二、1.13 2.12s

  三、1.设:底面正方形铁桶的底面边长为x,

  则x2×10=30×30×20,x2=30×30×2,

  x= × =30 .

  2. a =

  验证:a =

  = = = .

  21.2 二次根式的乘除

  第二课时

  教学内容

  = (a≥0,b>0),反过来 = (a≥0,b>0)及利用它们进行计算和化简。

  教学目标

  理解 = (a≥0,b>0)和 = (a≥0,b>0)及利用它们进行运算。

  利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简。

  教学重难点关键

  1.重点:理解 = (a≥0,b>0), = (a≥0,b>0)及利用它们进行计算和化简。

  2.难点关键:发现规律,归纳出二次根式的除法规定。

  教学过程

  一、复习引入

  (学生活动)请同学们完成下列各题:

  1.写出二次根式的乘法规定及逆向等式。

  2.填空

  (1) =________, =_________;

  (2) =________, =________;

  (3) =________, =_________;

  (4) =________, =________.

  规律: ______ ; ______ ; _______ ;

  _______ .

  3.利用计算器计算填空:

  (1) =_________,(2) =_________,(3) =______,(4) =________.

  规律: ______ ; _______ ; _____ ; _____ .

  每组推荐一名学生上台阐述运算结果。

  (老师点评)

  二、探索新知

  刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:

  一般地,对二次根式的除法规定:

  = (a≥0,b>0),

  反过来, = (a≥0,b>0)

  下面我们利用这个规定来计算和化简一些题目。

  例1.计算:(1) (2) (3) (4)

  分析:上面4小题利用 = (a≥0,b>0)便可直接得出答案。

  解:(1) = = =2

  (2) = = ×=2

  (3) = = =2

  (4) = = =2

  例2.化简:

  (1) (2) (3) (4)

  分析:直接利用 = (a≥0,b>0)就可以达到化简之目的。

  解:(1) =

  (2) =

  (3) =

  (4) =

  三、巩固练习

  教材P14 练习1.

  四、应用拓展

  例3.已知 ,且x为偶数,求(1+x) 的值。

  分析:式子 = ,只有a≥0,b>0时才能成立。

  因此得到9-x≥0且x-6>0,即6

  解:由题意得 ,即

  ∴6

  ∵x为偶数

  ∴x=8

  ∴原式=(1+x)

  =(1+x)

  =(1+x) =

  ∴当x=8时,原式的值= =6.

  五、归纳小结

  本节课要掌握 = (a≥0,b>0)和 = (a≥0,b>0)及其运用。

  六、布置作业

  1.教材P15 习题21.2 2、7、8、9.

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第二课时作业设计

  一、选择题

  1.计算 的结果是( )。

  A. B. C. D.

  2.阅读下列运算过程:

  ,

  数学上将这种把分母的根号去掉的过程称作"分母有理化",那么,化简 的结果是( )。

  A.2 B.6 C. D.

  二、填空题

  1.分母有理化:(1) =_________;(2) =________;(3) =______.

  2.已知x=3,y=4,z=5,那么 的最后结果是_______.

  三、综合提高题

  1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为 :1,现用直径为3 cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?

  2.计算

  (1) ?(- )÷ (m>0,n>0)

  (2)-3 ÷( )× (a>0)

  答案:

  一、1.A 2.C

  二、1.(1) ;(2) ;(3)

  2.

  三、1.设:矩形房梁的宽为x(cm),则长为 xcm,依题意,

  得:( x)2+x2=(3 )2,

  4x2=9×15,x= (cm),

  x?x= x2= (cm2)。

  2.(1)原式=- ÷ =-

  =- =-

  (2)原式=-2 =-2 =- a

  21.2 二次根式的乘除(3)

  第三课时

  教学内容

  最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算。

  教学目标

  理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式。

  通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求。

  重难点关键

  1.重点:最简二次根式的运用。

  2.难点关键:会判断这个二次根式是否是最简二次根式。

  教学过程

  一、复习引入

  (学生活动)请同学们完成下列各题(请三位同学上台板书)

  1.计算(1) ,(2) ,(3)

  老师点评: = , = , =

  2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_________.

  它们的比是 .

  二、探索新知

  观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:

  1.被开方数不含分母;

  2.被开方数中不含能开得尽方的因数或因式。

  我们把满足上述两个条件的二次根式,叫做最简二次根式。

  那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式。

  学生分组讨论,推荐3~4个人到黑板上板书。

  老师点评:不是。

  = .

  例1.(1) ; (2) ; (3)

  例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长。

  解:因为AB2=AC2+BC2

  所以AB= = =6.5(cm)

  因此AB的长为6.5cm.

  三、巩固练习

  教材P14 练习2、3

  四、应用拓展

  例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:

  = = -1,

  = = - ,

  同理可得: = - ,……

  从计算结果中找出规律,并利用这一规律计算

  ( + + +…… )( +1)的值。

  分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的。

  解:原式=( -1+ - + - +……+ - )×( +1)

  =( -1)( +1)

  =20xx-1=20xx

  五、归纳小结

  本节课应掌握:最简二次根式的概念及其运用。

  六、布置作业

  1.教材P15 习题21.2 3、7、10.

  2.选用课时作业设计。

  3.课后作业:《同步训练》

  第三课时作业设计

  一、选择题

  1.如果 (y>0)是二次根式,那么,化为最简二次根式是( )。

  A. (y>0) B. (y>0) C. (y>0) D.以上都不对

  2.把(a-1) 中根号外的(a-1)移入根号内得( )。

  A. B. C.- D.-

  3.在下列各式中,化简正确的是( )

  A. =3 B. =±

  C. =a2 D. =x

  4.化简 的结果是( )

  A.- B.- C.- D.-

  二、填空题

  1.化简 =_________.(x≥0)

  2.a 化简二次根式号后的结果是_________.

  三、综合提高题

  1.已知a为实数,化简: -a ,阅读下面的解答过程,请判断是否正确?若不正确,请写出正确的解答过程:

  解: -a =a -a? =(a-1)

  2.若x、y为实数,且y= ,求 的值。

  答案:

  一、1.C 2.D 3.C 4.C

  二、1.x 2.-

  三、1.不正确,正确解答:

  因为 ,所以a<0,

  原式= -a? = ? -a? =-a + =(1-a)

  2.∵ ∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=

数学说课稿 篇7

  一、教材分析

  在现代社会里,人们面临着更多的机会和选择,常常需要在不确定情境中做出合理的决策。概率正是通过对不确定现象和事件发生可能性的刻画,研究客观世界中的随机现象,来为人们更好的制定决策提供依据和建议。因而,义务教育苏科版数学教材七年级下册第十三章第1节安排了《确定与不确定》的内容,它是在学生已经具备了一定的收集数据的能力,并能对其进行简单的数据分析,进而寻找出其中规律的基础之上进行学习的。这一阶段的学生已经知道了生活中的一些常见的现象,能对生活中的常见现象发生的可能性进行简单分析和判别。通过这节课的学习能够让学生能根据自己的生活经验,体验有些事件的发生是确定的,而有些事件的发生是随机的,使学生能够正确区分身边的必然事件、不可能事件和随机事件,纠正学生对某些现象的错误认识,这也为后面进一步深入学习概率知识奠定了良好的基础。

  概率主要是研究现实生活中的随机现象,学习概率首先要弄清楚哪些现象是随机的,哪些现象又是确定的,所以,我认为本节课的重点是:区分不可能事件、必然事件和随机事件。七年级的学生正处于少年期,已具备一定的辨别和判断能力,能够对一些常见事件作出正确地判断,但由于受到生活经验和认知水平的限制,对于某些不常见事件还不能完全正确地认识,因此,我认为这一节课的难点应当是:正确地区分不可能事件、必然事件和随机事件。

  二、教学目标

  数学教学的基本出发点是促进学生全面、持续、和谐地发展,强调从学生已有的生活经验出发,让学生亲身经历探索过程。因此,结合本节课的内容特点和学生的认知背景,我把本节课的教学活动的目标拟定为这样的三个方面:

  (一)知识与技能目标:

  1、初步感受有些事件的发生是不确定的,有些事件的发生是确定的;

  2、会区分生活中的必然事件、不可能事件和随机事件。

  (二)过程与方法目标:

  作为一名数学教师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想,数学意识,培养学生的综合素质。因而,我把本节课的过程与方法目标拟为:

  1、经历猜测、试验、收集与分析试验结果的过程,让学生体验某些事件发生的随机性,同时学会与他人合作交流,敢于发表自己的观点。

  2、在与其他同学交流的过程中,能清晰地表达自己的思维过程。

  (三)情感与态度目标:

  1、在认识不可能事件、必然事件和随机事件的过程中,发展学生的随机观念,培养正确的价值观和人生观。

  2、在与他人的合作过程中,增强互相帮助、团结协作的精神。

  三、教法、学法

  教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。七年级学生的思维仍以经验性的逻辑思维为主,很大程度上仍需要依赖具体形象的经验材料来理解抽象的逻辑关系,故本节课采用“活动——参与法”,即按照“问题情境——实践活动——感受新知——归纳总结”的模式展开教学,在多个环节尽可能地让学生通过身心感受和利用经验来发展他们的随机观念,极力推行“做中学”,帮助学生由先动手后思考,逐步向先猜测再动手过渡。

  “教为不教,学为会学”;要“授之以鱼”,更要“授之以渔”。在教学活动中,关键是教学生学法。因此,本节课我准备指导学生采用:实验操作——收集数据——合作分析、处理数据——发现规律——归纳——应用的探究式的学习方法。为了更有效地开展小组活动,我打算将全班学生按4人为一组分成若干个学习小组,让全班学生都能积极、主动地参与到课堂活动中来。

  四、教学设备

  多媒体、实物投影仪、实物教具(甲、乙、丙3个完全相同的盒子、红球、白球、正方体骰子等)

  五、教学程序

  教学程序是教学目标的体现过程,是教法学法的实施过程,是教学理念的展现过程,是使知识与能力在现实背景中自然呈现的过程。结合本节课的教学内容及重难点,现对教学程序做一一分析。

  教学环节 教学流程 教学内容 设计意图

  创设情境

  在讲台上摆上甲盒子,将五个红球五个白球装入盒中(球除颜色外都相同,同时将放球过程完整展现在学生面前),将盒中的球摇匀。

  请几个学生到盒里摸一摸

  (1)从盒中任意摸出一球,一定是红球吗?说说你的想法。

  (2)摸几次试试看,每次都能摸出红球吗?

  (3)从盒中任意摸出两个球,一定都是一红一白吗?

  摸球游戏继续进行着,摸球的程序照旧,不过这次换了乙盒子,里面全是白球,学生并不知道。继续回答上述问题(1)(2)(3)

  如果换成装有全是红球的丙盒时,上述问题又该如何回答呢?

  此时揭示课题:确定与不确定

  让全班每个学生都参与到活动中来,虽说只有几位学生上讲台摸球,可这并不影响其他同学的热情,他们也在参与“猜”的活动,可以说通过这个游戏,全班学生的积极性都被调动起来了,并对不确定有了感性的认识。

  学生通过活动猜测出盒中全是白球,然后打开盒子验证他们的推理,让学生体验成功的喜悦,同时,也让学生对不可能事件有了认识。

  让学生对必然事件有了认识,在学生经历了猜测、试验、收集与分析试验结果、验证等活动过程,初步体验有些事件的发生是确定的,而有些事件的发生则是不确定的,从而引入新课。

  感受新知

  在上述活动中,事先能肯定它一定不会发生的有 ;

  事先能肯定它一定会发生的有 ;

  事先无法确定它会不会发生的有 。

  由此引入不可能事件,必然事件, 确定事件,随机事件等概念。

  我们的生活中有哪些事件是我们确定的?又有哪些事件是我们不确定的?

  学生经历了在摸球游戏中结果不尽相同的过程,透过现象看到本质,可以更好地理解概念,既避免了对概念的死记硬背,又使学生愿学、乐学。

  通过小组擂台赛的形式,充分调动学生的非智力因素,特别是内在动机,使他们能以强烈的`求知欲和饱满的热情投入到学习中来,同时还可以让学生进行充分地交流,培养学生从不同的角度来观察这个五彩缤纷的世界。

  学以致用

  请指出下列事件中,哪些事件是必然事件,哪些是不可能事件,哪些是随机事件?

  (1)掷一枚均匀的骰子,骰子停止转动后6点朝上。

  (2)任意选择电视的某一频道,它正在播动画片。

  (3)下一届世界杯足球赛巴西队夺冠。

  (4)太阳从西边升起。

  (5)明天星期二。

  (6)今天星期一,明天星期二。

  (7)青蛙会用鳃呼吸。

  (8)纯铁放在水里1周会生锈。

  (9)据天气预报明天小雨,那么明天会下雨。

  (10)供电公司通知,明天电路检修,某小区停电,该小区明天一定会停电。下列事件中哪些事件是必然事件,哪些是不可能事件,哪些是随机事件?

  (1)367人中有2人的生日相同。

  (2)小明家将获得500万元彩票大奖。

  (3) 3天内将下雨。

  (4)妇幼保健院,下一个出生的婴儿是女孩子。

  (5)你最喜爱的篮球队将夺得CBA冠军。

  (6)在标准大气压下,温度低于0℃时冰融化。

  (7)1+3>2

  (8)三角形三个内角的和是180度。

  (9)如果a,b都是有理数,那么ab=ba

  (10)两直线平行,同位角相等。

  在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么,该项比赛的

  (1)冠军属于中国吗?

  (2)冠军属于外国吗?

  (3)冠军属于中国选手甲吗?

  (4)如果最后进入决赛的是两名外国选手,那前面提出的3个问题的答案怎样?

  (5)如果最后进入决赛的是一名中国选手和一名外国选手呢?情况又会怎样?

  到医院去注射青霉素药水,医生都要先给你做皮肤试验,极少数人对青霉素药水过敏,大约在一千人里才有一个,医生为什么一定要这样做呢?

  下列成语、谚语、诗句中表示必然事件的是( ),表示不可能事件的是( ),表示随机事件的是( )(1)守株待兔 (2)拔苗助长 (3)一箭双雕 (4)巧妇难为无米之炊 (5)失败是成功之母 (6)近朱者赤,近墨者黑(7)滚滚长江东逝水(8)清明时节雨纷纷 (9)白发三千丈 (10)燕山雪花大如席

  掷骰子游戏:

  小组相互协作:先由一名学生掷骰子,再回答问题:

  (1)“掷得的数是奇数”是不可能发生的,因为骰子上不全是奇数,还有偶数;

  (2)“掷得的数是奇数”是必然发生的,因为骰子上有奇数;

  (3)“掷得的数不会超过7”是可能发生的,因为骰子上的数都没超过7。

  摸球游戏:

  规则:共有15个白球,5个红球.每次只能摸5个球,摸到5个红球为一等奖,摸到4个红球和1个白球为二等奖,依次类推。

  (1)学生动手摸奖,体会中奖的可能性。

  (2)设计游戏:你能仿照上面的游戏自己设计几个游戏吗?(一个是必然事件,一个是不可能事件,一个是随机事件)

  (3)至少摸多少个球,使“其中一定有白球”成为必然事件?

  犯人为什么要吞下“生死签”?

  在古代某地,有一县令用抽“生死签”的方法决定犯人的生死,有一犯人与该县令有私仇。县令为了报复他,偷偷在两张纸片上都写下了“死”字,聪明的犯人抽到一张后立即吞到肚子里,要求打开另一张,县令不得不把剩下的另一张公示于众,只好认定犯人吞下去的那张为“生”签,犯人得以死里逃生。你能用所学的知识说明犯人为犯人为什么要吞下“生死签”吗?

  对于概念的学习,要通过多次感知,不断强化,及时地辨别分析,才能真正领悟到概念的本质,作出正确的判断,这其中(5)、(6)两题,要注意比较、区别,(7)、(8)两题与学生的生活常识和生物知识有关,教师可适当加以解释,也可让学生课后查阅资料,(9)题中明天下雨是由当天的天气决定的,天气预报仅仅是对明天天气的预测,(10)题中小区停电是由供电部门决定的。

  巩固新知,深化学习内容,通过第(7)、(8)、(9)、(10)4小题让学生仿照再举几例,使学生认识到以前所学习的大量的公式、法则等一般来说都是必然事件。

  通过条件的不断变化,让学生发现必然事件,不可能事件,随机事件三者在一定条件下可以相互转化,引导学生体会概念中的“特定条件”,培养学生的辩证思维。

  用数学的眼光去看待生活中的问题,用数学的知识去解释、分析生活问题,培养学生用数学的意识。

  既可以陶冶学生的情操,体现了学科渗透,又锻炼了学生能在复杂的情境中正确判断出各类不同的事件,培养了学生分析问题的能力。

  培养学生的实际操作能力及小组相互协作的能力,并帮助学生澄清一些模糊认识,培养学生思维的深刻性。

  设计学生非常感兴趣的摸奖活动,既能加深对三种事件的理解,又能调动学生的积极性,活跃课堂气氛,同时也为下面学习可能性大小埋下伏笔。

  用故事的形式易激起学生的好奇心,通过解释犯人的行为,培养学生分析问题、解决问题的能力。

  分享收获 1.你对确定与不确定有什么认识?

  2.你还有什么疑惑或没有弄懂的地方?

  3.你还有什么想法和建议? 给学生充分展现自我的机会,鼓励学生多思、多想、多说,注重学生相互评价方式的运用。

  作业设计 1.用适当的语言来表示下列词语所反映的事件发生情况?

  东边日出西边雨 十拿九稳 大海捞针 海枯石烂

  2.现有6个球,3个红和3个白,这6个球除颜色外完全相同,请设计一个袋中摸球游戏,使得:

  (1)任意摸出1个球,一定是红球;

  (2)任意摸出2个球,一定都不是红球;

  (3)任意摸出2个球,一定是1个红球,一1个白球;

  (4)任意摸出3个球,可能是2个红球,1个白球。 分层次设计作业

  本题是道开放性试题,有的设计方案可以多种多样,重在培养学生逆向思维的能力,同时也给学有余力的同学一个施展才华的空间,让不同的学生在数学上有着不同的发展,符合新课程改革的精神。

  附:板书设计

  确定与不确定

  不可能事件

  确定事件

  必然事件

  随机事件---不确定事件---可能会发生,也可能不会发生

  三种事件在一定条件下可以相互转化

数学说课稿 篇8

  一、教材分析

  1.教材中的地位及作用

  本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。

  2.教学目标的确定及依据

  平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。

  (1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、顶点、离心率、渐近线等几何性质;

  ②掌握双曲线标准方程中的几何意义,理解双曲线的渐近线的概念及证明;

  ③能运用双曲线的几何性质解决双曲线的一些基本问题。

  (2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察能力,想象能力,数形结合能力,分析、归纳能力和逻辑推理能力,以及类比的学习方法;

  ②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的概念的理解。

  (3)德育目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。

  3.重点、难点的确定及依据

  对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中我把渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。因此,我把渐近线的证明作为本节课的难点,根据本节的.教学内容和教学大纲以及高考的要求,结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。

  4.教学方法

  这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。在教学中,学生自己能得到的结论应该让学生自己得到,凡是难度不大,经过学习学生自己能解决的问题,应该让学生自己解决,这样有利于调动学生学习的积极性,激发他们的学习积极性,同时也有利于学习建立信心,使他们的主动性得到充分发挥,从中提高学生的思维能力和解决问题的能力。

  渐近线是双曲线特有的

  性质,我们常利用它作出双曲线的草图,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。因此,在教学过程中着重培养学生的创造性思维,通过诱导、分析,从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。

  例题的选备,可将此题作一题多变(变条件,变结论),训练学生一题多解,开拓其解题思路,使他们在做题中总结规律、发展思维、提高知识的应用能力和发现问题、解决问题能力。

  二、教学程序

  (一).设计思路

  (二).教学流程

  1.复习引入

  我们已经学习过椭圆的标准方程和双曲线的标准方程,以及椭圆的简单的几何性质,请同学们来回顾这些知识点,对学习的旧知识加以复习巩固,同时为新知识的学习做准备,利用多媒体工具的先进性,结合图像来演示。

  2.观察、类比

  这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,首先观察双曲线的形状,试着按照椭圆的几何性质,归纳总结出双曲线的几何性质。一般学生能用类似于推

  导椭圆的几何性质的方法得出双曲线的范围、对称性、顶点、离心率,对知识的理解不能浮于表面只会看图,也要会从方程的角度来解释,抓住方程的本质。用多媒体演示,加强学生对双曲线的简单几何性质范围、对称性、顶点(实轴、虚轴)、离心率(不深入的讲解)的巩固。之后,比较双曲线的这四个性质和椭圆的性质有何联系及区别,这样可以加强新旧知识的联系,借助于类比方法,引起学生学习的兴趣,激发求知欲。

  3.双曲线的渐近线的发现、证明

  (1)发现

  由椭圆的几何性质,我们能较准确地画出椭圆的图形。那么,由双曲线的几何性质,能否较准确地画出双曲线的图形为引例,让学生动笔实践,通过列表描点,就能把双曲线的顶点及附近的点较准确地画出来,但双曲线向远处如何伸展就不是很清楚。从而说明想要准确的画出双曲线的图形只有那四个性质是不行的。

  从学生曾经学习过的反比例函数入手,而且可以比较精确的画出反比例函数的图像,它的图像是双曲线,当双曲线伸向远处时,它与x、y轴无限接近,此时x、y轴是的渐近线,为后面引出渐近线的概念埋下伏笔。从而让学生猜想双曲线有何特征?有没有渐近线?由于双曲线的对称性,我们只须研究它的图形在第一象限的情况即可。在研究双曲线的范围时,由双曲线的标准方程,可解出,,当x无限增大时,y也随之增大,不容易发现它们之间的微妙关系。但是如果将式子变形为,我们就会发现:当x无限增大,逐渐减小、无限接近于0,而就逐渐增大、无限接近于1();若将变形为,即说明此时双曲线在第一象限,当x无限增大时,其上的点与坐标原点之间连线的斜率比1小,但与斜率为1的直线无限接近,且此点永远在直线的下方。其它象限向远处无限伸展的变化趋势就可以利用对称性得到,从而可知双曲线的图形在远处与直线无限接近,此时我们就称直线叫做双曲线的渐近线。这样从已有知识出发,层层设(释)疑,激活已知,启迪思维,调动学生自身探索的内驱力,进一步清晰概念(或图形)特征,培养思维的深刻性。

  利用由特殊到一般的规律,就可以引导学生探寻双曲线(a>0,b>0)的渐近线,让学生同样利用类比的方法,将其变形为,,由于双曲线的对称性,我们可以只研究第一象限向远处的变化趋势,继续变形为,,可发现当x无限增大时,逐渐减小、无限接近于0,逐渐增大、无限接近于,即说明对于双曲线在第一象限远处的点与坐标原点之间连线的斜率比小,与斜率为的直线无限接近,且此点永远在直线下方。其它象限向远处无限伸展的变化趋势可以利用对称性得到,从而可知双曲线(a>0,b>0)的图形在远处与直线无限接近,直线叫做双曲线(a>0,b>0)的渐近线。我就是这样将渐近线的发现作为重点,充分暴露思维过程,培养学生的创造性思维,通过诱导、分析,巧妙地应用极限思想导出了双曲线的渐近线方程。这样处理将数学思想渗透于其中,学生也易接受。

  (2)证明

  如何证明直线是双曲线(a>0,b>0)的渐近线呢?

  启发思考①:首先,逐步接近,转换成什么样的数学语言?(x→∞,d→0)

  启发思考②:显然有四处逐步接近,是否每一处都进行证明?

  启发思考③:锁定第一象限后,具体地怎样利用x表示d

  (工具是什么:点到直线的距离公式)

  启发思考④:让学生设点,而d的表达式较复杂,能否将问题进行转化?

  分析:要证明直线是双曲线(a>0,b>0)的渐近线,即要证明随着x的增大,直线和曲线越来越靠拢。也即要证曲线上的点到直线的距离

  |mQ|越来越短,因此把问题转化为计算|mQ|。但因|mQ|不好直接求得,因此又可以把问题转化为求|mN|。

  启发思考⑤:这样证明后,还须交代什么?

  (在其他象限,同理可证,或由对称性可知有相似情况)

  引导学生层层深入的进行探究,从而更深刻的理解双曲线的渐近线的发现及证明过程。

  3)深化

  再来研究实轴在y轴上的双曲线(a>0,b>0)的渐近线方程就会变得容易很多,此时可利用类比的方法或者利用对称性得到焦点在y轴上的双曲线的渐近线方程即为。

  这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精确的画出双曲线。但是如果仔细观察渐近线实质就是双曲线过实轴端点、虚轴端点,作平行与坐标轴的直线所成的矩形的两条对角线,数形结合,来加强对双曲线的渐近线的理解。

  4.离心率的几何意义

  椭圆的离心率反映椭圆的扁平程度,双曲线离心率有何几何意义呢?不难得到:,这是刚刚学生在类比椭圆的几何性质时就可以得到的简单结论。通过对离心率的研究,同样也可以使学生进一步加深对渐近线的理解。

  由等式,可得:,不难发现:e越小(越接近于1),就越接近于0,双曲线开口越小;e越大,就越大,双曲线开口越大。所以,双曲线的离心率反映的是双曲线的开口大小。通过对这些性质的探究,就可以更好的理解双曲线图形与这些基本量之间的关系,更加准确的作出双曲线的图形。

  5.例题分析

  为突出本节内容,使学生尽快掌握刚才所学的知识。我选配了这样的例题:

  例1.求双曲线9x2-16y2=144的实半轴长和虚半轴长、顶点和焦点坐标、渐近线方程、离心率。选题目的在于拿到一个双曲线的方程之后若不是标准式,要先将所给的双曲线方程化为标准方程,后根据标准方程分别求出有关量。本题求渐近线的方程的方法:(1)直接根据渐近线方程写出;(2)利用双曲线的图形中的矩形框架的对角线得到。加强对于双曲线的渐近线的应用和理解。

  变1:求双曲线9y2-16x2=144的实半轴长和虚半轴长、顶点和焦点坐标、渐近线方程、离心率。选题目的:和上题相同先将所给的双曲线方程化为标准方程,后根据标准方程分别求出有关量;但求渐近线时可直接求出,也可以利用对称性来求解。

  关键在于对比:双曲线的形状不变,但在坐标系中的位置改变,它的那些性质改变,那些性质不变?试归纳双曲线的几何性质

  变2:已知双曲线的渐近线方程是,且经过点(,3),求双曲线的标准方程。选题目的:在已知双曲线的渐近线的前提下

数学说课稿 篇9

  课堂教学是落实素质教育的主渠道。近年来,我们除了继续抓好优质课评癣评课等教学活动外,还在教师中增加了“说课”这项新内容。实践证明,说课活动不受时间、空间、人数的限制,简便易行,具有较强的参与性与合作性,能很好地解决教学与研究、理论与实践相脱节的矛盾。目前,这种形式已成为大面积提高教师素质、优化课堂教学、落实素质教育的有效途径。

  一、说课的具体内容与要求

  所谓“说课”,即授课教师在备课的基础上,结合有关教育教学理论,就一节课或一个单元(章节)或一个知识点,说教材、说教法、说学法、说教学程序。

  数学说课内容,主要有四个方面:

  1.说教材。说课者要对教材进行分析,要说出所教知识在整个学科知识体系中或小学阶段本年级、本册书、本单元中所处的位置和作用,教材编写的意图,前后知识的相互联系,教学目的、要求、重点、难点及关键,课时安排等。

  2.说教法。说课者要说出教学内容以哪种教学方法为主,采用哪些教学手段及其理论根据。一般来说,任何一节课,都是多种教学方法的综合运用,不管以哪种教法为主,采用什么教学手段,都是根据教材和学生实际、结合学校的设备条件以及教师本人特长而定的,要注重实效。

  3.说学法。说课者要说出通过教学内容教给学生什么样的学习方法,培养学生哪些能力,如何调动学生积极思维,怎样激发后进生学习兴趣,使学生既学会知识,又掌握学习方法。

  4.说教学程序。说课者要说出所授内容的教学思路、课堂结构、板书设计。

  所谓教学思路,即打算怎样教,分几步完成,每步怎样做,以及为什么这样教,理论根据是什么。教学思路没有固定的模式,但一定要符合教学大纲的要求,可根据不同教材、不同年级学生特点和教师的教学风格设计。对于板书,则要说出板书设计的意图。

  二、开展说课活动是优化课堂教学的有效途径

  上述“四说”之中蕴含着教育思想、教育观点、教育原则、教学方法。因此,要想使说课说得明白、说得有理有据,教师必须深钻教材,研究教学方法和学法。

  说课是对教学蓝图的分析、论证。其根本目的是为了上好课。可见说课尽管是教师的切磋琢磨,但目的是为了优化课堂教学,提高教学效率,促进素质教育的落实。

  数学说课与优化教学,标签:五年级数学说课稿,小学数学说课稿,

  (一)说“准”教材,促进“三基”教学抓好基础知识教学和基本技能、基本思维方法的培养,是素质教育在小学教学上最主要的要求。实践表明,说“准”教材,能促进“三基”教学,而要说“准”就必须深钻教材。

  首先,要切实把握好一节课的教学目的要求。对于任何一节课,确定教学目的要求都是十分重要的,因为它指出了教学的主攻方向,规定一整节课教学活动的归宿。确定教学目的要求,一要全面、二要具体、三要恰当。所谓全面,即不仅要有对知识的要求,也应当有对能力的要求;不仅要有对智育的要求,也应当结合教学内容有对思想品德的要求。所谓具体,即指在40分钟里能够具体实现的。

  所谓恰当,即指要求的程度要符合教学大纲的要求及学生的实际,过高过低都是不科学的。

  其次,要根据知识之间的内在联系,找准新旧知识的连接点。数学新旧知识间有密切的联系,新知识一般都是在旧知识的基础上引伸发展起来的。所以在深钻教材时要找好新旧知识的衔接点和生长点,从学生最近发展区,创设最佳的问题情境。要很好地运用旧知识和已有的'概念,已知概念是由形象思维向抽象思维转化的决定性催化剂。比如,要讲异分母分数加减法,可先安排同分母分数加减法复习题,让学生说出同分母分数加减法的法则及算理,然后出几组通分的题让学生通分,接着就可以出现3/4+2/5一题,让学生讨论与复习的题有什么不同,应该怎样计算。学生利用旧有知识,运用迁移规律,进入学习新知识的阶段。

  (二)说“明”教法,促进思维能力的培养要说明教法,就得研究教法,优化教法。一般来说,选择适当的教学方法要做到“四要”:一要有助于调动学生认识活动的积极性和发展能力;二要重视激发学生的学习动机;三要遵循认识规律,启发学生思考;四要注意适应面向全体和因材施教的不同需要。比如,关于长方形面积计算公式的教学,有三种教法。

  教法一,教师直接告诉学生长方形的面积计算公式:长方形的面积=长X宽。教法二,列表,发现规律。教法三,将一个长方形分成若干个面积单位,让学生“数”,预计会出现三种数法:①逐个数;②按行(列)数;③先数后乘。在此基础上,教师擦去小方格而量长和宽。

  比较上面三种教法,教法三是一种较优的教学方法。教法一是只教结论,不教过程;教法二虽有分析过程,但以数据为基础,没有“面积”的直观图形:而教法三则采用数形结合的方法,借助于面积单位,让学生通过“数”发现规律,这种教法是让学生经历由直接计量到间接计量的过程。在寻求公式的过程中,学生的抽象思维能力得到了提高。

  (三)说“会”学法,促进学习能力的培养实施素质教育的关键是教给学生学习的方法和策略,使学生实现由“学会”过渡到“会学”的质的飞跃。因此,教师在考虑如何教的同时,也要考虑如何指导学生学。学生掌握了学习的方法,学习数学的能力提高了,学习积极性也增强了。在教学中,一是要加强学习方法的指导和学习习惯的培养;二是要加强思维方法的引导,让学生逐步掌握正确的思维方法,培养与发展他们的思维能力,如面积概念的建立,就应着重培养学生抽象概括的能力。教学时要让学生摸一摸文具盒盖的面、数学课本的封面,比一比文具盒盖的面和课本封面的大小,抽象出物体表面有大有校紧接着在投影板上将四条线段围成一个图形,再将另外四条长一些线段围成一个图形,让学生判断两个平面图形的大小(学生难以判断)。

  教师再将大小相等的方格覆盖在图形上,让学生观察,数一数方格有多少个,在此基础上抽象出围成的平面图形有大小之分,进而引导学生概括出什么叫面积,让学生在参与的过程中,学到并掌握一定的数学思维方法。

  (四)说“清”教学程序,促进教学效率的提高说课的一个重要特点是要说清楚理论根据,即不仅要说出怎样教,更要说出这样教的理由。因此,说课者设计每一步教学程序都应蕴含着教育思想、教育原则,从而保证课堂教学设计的科学性,以达到优化教学的目的。

  例如,“异分母分数加法法则”的教学程序设计如下:(1)计算1/2+1/3=?(揭示课题);(2)复习同分母分数的加法法则;(3)将异分母分数与同分母分数进行比较,分析两者的区别及联系;(4)引导学生将1/2、1/3化为分数单位相同的分数,即通分。

  在对上述教学程序说“理”时,不能停留在就事论事的说明上,应把自己的设想提高到理论的高度。本课通过这样一个问题引入新课,能使学生的思维很快处于兴奋状态。这样,一方面可缩短组织教学的时间,引导学生积极思维,另一方面让学生带着问题复习旧知识,以利于培养学生的探索性思维能力、激发学生的求知欲。在探索过程中,引导学生将异分母分数与同分母分数进行比较,使学生了解分母不同就是分数单位不同,不同单位的数不能直接相加。因此,必须先把它们化成相同单位的数,也就是化成同分母分数才能相加,即先通分,后相加。

  这样,学生在问题--复习--比较--转化的过程中,既掌握限异分母分数的加法法则,又发展了思维能力,同时还向学生渗透了化归思想。

  这样的说课,既有教学程序的展示,又有理论根据,课说得有理有据。说课之后,再由听者进行评议,指出不足及改进之处,既为上好课,提高课堂教学效率,提供了可靠的保障,也达到了相互交流,共同提高的目的。说课实为一种很好的教研形式。

数学说课稿 篇10

  一、说教材

  工程问题是用分数解答有关工作总量、工作时间、工作效率的应用题。它的解题思路与整数应用题的解题思路基本相同,仍然是用工作总量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量作为单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率。这样,由于解题中遇到的不是具体数量,有的学生往往感到抽象,不易理解。

  教学重点是:掌握工程问题的数量关系和解答方法。

  难点是:如何分析分数工程问题的数量关系。关键是:正确分析题目中哪个量是工作总量、工作时间和工作效率。

  二、说教法

  现代数学理论认为,小学数学课应增加学生的数学活动,依据本单元教材特点和学生认知规律,这节课我主要运用复习引入法、情境教学法、启发分析法等进行教学。并运用电化教学手段增加教学的新颖性,引导学生多种感官参与学习的全过程。

  三、说学法。

  教与学密不可分,教是为了更好地学。因此要做到“授人以鱼,不如授入以渔”。根据学生的学习规律,在教学过程中,主要指导学生掌握如下学习方法:转化迁移的方法、比较分析法、总结归纳法。

  四、说教学过程。

  根据教学大纲的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,本课教学过程的设计分四个环节。

  第一环节是复习铺垫。

  由于用分数解工程问题与整数解工程问题的思路基本相同,仍然是工作总量除以工作效率等于工作时间,只是题目中没有给出具体的工作总量,解答时要把总量作为单位“1”,用单位时间完成工作总量的几分之一来表示工作效率。所以我先让学生口答:(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。(2)如果这项工程每天完成 ,( )天完成。巩固了旧知,为学习新知作好铺垫。

  第二环节是学习新知识,分三步进行。

  第一步:加深对整数解工程问题的数量关系的理解。

  出示:三毛小学要修200米的'塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成?

  引导学习读题,明确已知、未知条件及怎样列式。学生列出正确算式之后引导学生说出这个算式每一步表示的意思,根据是什么,弄清题目中的数量关系。

  第二步:探究用分数解工程问题。

  这是本课的重点和难点。出示改变题目(即把上题中的“200米”去掉)。启发学生想:没有这个条件,这道题能不能解答?引导学生想:可以把这条跑道看作单位“1”,那么甲队每天修这条跑道的几分之几?乙队每天修这条跑道的几分这几?两队合修,每天可修这条跑道的几分之几?两队合修几天可以完成怎样求?根据是什么?通过这些问题,联系学过的工程问题的数量关系,逐一解决每个问题,也就突破了这节课的难点。

  第三步,比较分数解和整数解工程问题,加深印象。

  比较上下两道题,使学生认识到这两种解法在思路上是一致的,数量关系基本相同,都是用工作总量除以工作效率的和。只是在后一种解法中没有给出工作总量的具体数量,只给出“一段公路”,“一项工程”,“一件工作”,“修一条路”等,解答时把工作总量看作单位“1”,用工作总量的几分之一来表示工作效率。

  第四环节是练习、巩固。

  练习是使学生掌握知识、形成技能发展智力的重要手段,因此我在设计练习时尽量地做到科学、合理,体现一定的层次性,针对性,有坡度,难易适中。

  工程问题应用题

  教学目标:

  1、 了解工程问题的结构特征及数量关系,学会解答比较简单的工程问题。

  2、 在主动参与、发现和揭示数学原理和方法中提高思维水平。

  教学流程

  一、复习铺垫

  1、谈话:

  同学们,我们学校准备在明年暑假把操场上的跑道改造成塑胶跑道。你见过塑胶跑道吗?它有什么优点?但铺塑胶跑道需要很多钱,还需要专业的施工队。

  2、出示:

  (1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。

  (2)如果这项工程每天完成 ,( )天完成。

  3、揭题:

  在日常生活中,像修跑道、造桥、运货、搞绿化等各种工作,我们统称为工程,今天的这节课我们就一起来研究工程问题。

  二、探究新知

  1、谈话:

  如果我们能将修塑胶跑道这项工程进行招标。应聘单位有两个,他们都承诺能保质保量完成任务。但甲工程队单独完成需10天,乙工程队单独完成需8天。

  问:(1)如果你是校长,你选择哪个施工队?为什么?

  (2)但新学期开学迫在眉睫,为了 同学们在新学期一开学就能在跑道上上体育课,如果你是校长,又该怎么办呢?

  2、出示:

  三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成。

  (1)独立解题 200÷(200÷10+200÷8)= 4 (天)

  (2)交流反馈、小结数量关系式:

  讨论:200÷10与200÷8各表示什么?这两个商加起来又表示什么?再用200除以它们的和得到了什么?根据什么数量关系算出合作的时间?

  板书(工作总量÷工作效率和=合作工作时间)

  (3)那如果要修建的塑胶跑道是400米,800米又要多少天时间呢?独立做。

  400÷(400÷10+400÷8)=4 (天)

  800÷(800÷10+800÷8)= 4 (天)

  (4)讨论:三道题做完了,你有什么发现?猜猜如果跑道是1000米的话,用几天时间完成?跑道长度是a米呢?看来完成工程的天数跟工作重量没多大关系?那么到底为什么工作总量在变化,可完工的时间却一样?

  3、出示:

  例、三毛小学要修一条塑胶跑道,由甲工程队单独施工需10天;由乙工程队单独施工要8天完成。两队共同施工需要多少天完成?

  (1)分析思考:A、工作重量不知道怎么办?

  B、甲工程队的工作效率是多少?怎样想出来的? 乙工程队呢?

  (2)怎样列式。(尝试)。

  (3)交流说说 。1÷( + )中。 、 各表示什么? + 又表示什么。“1”

【数学说课稿】相关文章:

数学说课稿07-20

数学说课稿09-06

《数学广角》说课稿09-06

小学数学经典说课稿11-27

数学说课稿09-06

小学数学说课稿08-05

初中数学说课稿08-25

人教版数学说课稿11-29

小学数学说课稿11-07

小学数学说课稿08-09