二次根式教案
作为一名无私奉献的老师,时常会需要准备好教案,借助教案可以让教学工作更科学化。我们该怎么去写教案呢?以下是小编为大家收集的二次根式教案,仅供参考,欢迎大家阅读。
二次根式教案1
1.请同学们回忆(≥0,b≥0)是如何得到的?
2.学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,请每个同学再举一个例子,然后由这些特殊的例子,得出:
(≥0,b0)
使学生回忆起二次根式乘法的运算方法的推导过程.
类似地,请每个同学再举一个例子,
请学生们思考为什么b的取值范围变小了?
与学生一起写清解题过程,提醒他们被开方式一定要开尽.
对比二次根式的乘法推导出除法的`运算方法
增强学生的自信心,并从一开始就使他们参与到推导过程中来.
对学生进一步强化被开方数的取值范围,以及分母不能为零.
强化学生的解题格式一定要标准.
教学过程设计
问题与情境师生行为设计意图
活动二自我检测
活动三挑战逆向思维
把反过来,就得到
(≥0,b0)
利用它就可以进行二次根式的化简.
例2化简:
(1)
(2)(b≥0).
解:(1)(2)练习2化简:
(1)(2)活动四谈谈你的收获
1.商的算术平方根的性质(注意公式成立的条件).
2.会利用商的算术平方根的性质进行简单的二次根式的化简.
找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.
二次根式的乘法公式可以逆用,那除法公式可以逆用吗?
找学生口述解题过程,教师将过程写在黑板上.
请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.
请学生自己谈收获,并总结本节课的主要内容.
为了更快地发现学生的错误之处,以便纠正.
此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.
让学困生在自己做题时有一个参照.
充分发挥组长的作用,尽可能在课堂上将问题解决.
二次根式教案2
一、教学目标
1。使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。
2。使学生掌握化简一个二次根式成最简二次根式的方法。
3。使学生了解把二次根式化简成最简二次根式在实际问题中的应用。
二、教学重点和难点
1。重点:能够把所给的二次根式,化成最简二次根式。
2。难点:正确运用化一个二次根式成为最简二次根式的方法。
三、教学方法
通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法。
四、教学手段
利用投影仪。
五、教学过程
(一)引入新课
提出问题:如果一个正方形的面积是0。5m2,那么它的边长是多少?能不能求出它的近似值?
了。这样会给解决实际问题带来方便。
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数。
总结满足什么样的条件是最简二次根式。即:满足下列两个条件的'二次根式,叫做最简二次根式:
1。被开方数的因数是整数,因式是整式。
2。被开方数中不含能开得尽方的因数或因式。
例1 指出下列根式中的最简二次根式,并说明为什么。
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式。前面二次根式的运算结果也都是最简二次根式。
例2 把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简。
例3 把下列各式化简成最简二次根式:
说明:
1。引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简。
2。要提问学生
问题,通过这个小题使学生明确如何使用化简中的条件。
通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题。
注意:
①化简时,一般需要把被开方数分解因数或分解因式。
②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化。
(三)小结
1。满足什么条件的根式是最简二次根式。
2。把一个二次根式化成最简二次根式的主要方法。
(四)练习
1。指出下列各式中的最简二次根式:
2。把下列各式化成最简二次根式:
六、作业
教材P。187习题11。4;A组1;B组1。
七、板书设计
二次根式教案3
教学目标
1.使学生进一步理解二次根式的意义及基本性质,并能熟练 地化简含二次根式的式子;
2.熟练地进行二次根式的加、减、乘、除混合运算.
教学重点和难点
重点:含二次根式的式子的混合运算.
难点:综合运用二次根式的 性质及运算法则化简和计算含二次根式的式子.
教学过程设计
一、复习
1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各 式成立的条件.
指出:二次根式的这些基本性质都是在一定条件 下才成立的,主要应用于化简二次根式.
2.二次根式 的乘法及除法的法则是什么?用式子表示出来.
指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,
计算结果要把分母有理化.
3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:
4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
二、例题
例1 x取什么值时,下列各式在实数范围内有意义:
分析:
(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(3)题是两个二次根式的和, x的取值必须使两个二次根式都有意义;
(4)题的分子是二次根式,分母是含x的`单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.
x-2且x0.
解因为n2-90, 9-n20,且n-30,所以n2=9且n3,所以
例3
分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3 -a0和1-a>0.
解 因为1-a>0,3-a0,所以
a<1,|a-2|=2-a.
(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.
这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.
问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?
分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.
注意:
所以在化简过程中,
例6
分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.
a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),
三、课堂练习
1.选择题:
A.a2B.a2
C.a2D.a<2
A .x+2 B.-x-2
C.-x+2D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空题:
4.计算:
四、小结
1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.
2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.
3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.
4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.
五、作业
1.x是什么值时,下列各式在实数范围内有意义?
2.把下列各式化成最简二次根式:
二次根式教案4
教案
教法:
1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;
2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:
1、类比的方法通过观察、类比,使学生感悟二次根式的`模型,形成有效的学习策略。
2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。
4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
知识点
上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。
二、展示目标,自主学习:
自学指导:认真阅读课本第3页——4页内容,完成下列任务:
1、请比较与0的大小,你得到的结论是:________________________。
2、完成3页“探究”中的填空,你得到的结论是____________________。
3、看例2是怎样利用性质进行计算的。
4、完成4页“探究”中的填空,你得到的结论是:____________________。
5 、看懂例3,有困难可与同伴交流或问老师。
课时作业
教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm2,另一张面积为450 cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈1.414,结果保留整数)
二次根式教案5
教学目的:
1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;
2、会求二次根式的代数的值;
3、进一步提高学生的综合运算能力。
教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式
教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值
教学过程:
一、二次根式的混合运算
例1 计算:
分析:(1)题是二次根式的。加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。
(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。
练习1:P206 / 8--① P207 / 1①②
例2 计算
问:计算思路是什么?
答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。
二、求代数式的值。 注意两点:
(1)如果已知条件为含二次根式的式子,先把它化简;
(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。
例3 已知,求的值。
分析:多项式可转化为用与表示的'式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。
例4 已知,求的值。
观察代数式的特点,请说出求这个代数式的值的思路。
答:所求的代数式中,相减的两个式子的分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。
三、小结
1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。
2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。
3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。
四、作业
P206 / 7 P206 / 8---②③
二次根式教案6
教学设计
1、知识技能:
(1)会进行简单的二次根式的除法运算。
(2)使学生能利用商的算术平方根的性质进行二次根式的化简与运算。
2、数学思考:在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则。
3、 解决问题:引导学生从特殊到一般总结归纳的`方法以及类比的方法,解决数学问题。
4、情感态度:通过本节课的学习使学生认识到事物之间是相互联系的,相互作用的
同步练习含答案解析
【考点】最简二次根式。
【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是。
【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;
B、符合最简二次根式的条件;故本选项正确;
B、,被开方数里含有能开得尽方的因式x2;故本选项错误;
C、被开方数里含有分母;故本选项错误。
D、被开方数里含有能开得尽方的因式a2;故本选项错误;
故选;B。
【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:
(1)被开方数不含分母;
(2)被开方数不含能开得尽方的因数或因式。
课时练习含答案
解答:选项A是二次根式乘法的运算,选项C不符合二次根式的运算条件,选项D中被开方数不能为负,故A、C、D都是错误的,唯有B符合二次根式除法运算法则,故选B。
分析:正确运用二次根式除法运算法则进行计算,并能辨析运算的正误,是本节的教学难点,学生可以通过比较分析或正确计算加以判断。
二次根式教案7
【1】二次根式的加减教案
教材分析:
本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。
学生分析:
本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
设计理念:
新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的.基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。
教学目标知识与技能目标:
会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。
过程与方法目标:
通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。
情感态度与价值观:
通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.
重点、难点:重点:
合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。
难点:
二次根式加减法的实际应用。
关键问题 :
了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。
教学方法:.
1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。
2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。
3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。
【2】二次根式的加减教案
教学目标:
1.知识目标:二次根式的加减法运算
2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。
3.情感态度:培养学生善于思考,一丝不苟的科学精神。
重难点分析:
重点:能熟练进行二次根式的加减运算。
难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。
教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。
运用教具:小黑板等。
教学过程:
问题与情景 | 师生活动 | 设计目的 |
活动一: 情景引入,导学展示 1.把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点? 2.现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板? | 这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。 问:什么样的二次根式能进行加减运算,运算到那一步为止。 由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。 | 加强新旧知识的联系。通过观察,初步认识同类二次根式。 引出二次根式加减法则。 |
3. A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的.学习。 例1.计算: (1) ; (2) - ; 例2. 计算: 1) 2) 例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)? 活动二:分层练习,合作互助 1.下列计算是否正确?为什么? (1) (2) ; (3) 。 2.计算: (1) ; (2) (3) (4) 3.(见课本16页) 补充: 活动三:分层检测,反馈小结 教材17页习题: A层、 B层:2、3. C层1、2. 小结: 这节课你学到了什么知识?你有什么收获? 作业:课堂练习册第5、6页。 | 自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。 此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。 老师提示: 1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。 A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。 点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理; 3)运算法则的运用是否正确 先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。 小结时教师要关注: 1)学生是否抓住本课的重点; 2)对于常见错误的认识。 | 把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。 学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。 将二次根式的加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。 小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。 培养学生的计算的准确性,以培养学生科学的精神。 对课堂的问题及时反馈,使学生熟练掌握新知识。 每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。 |
二次根式教案8
教学设计思想
新教材打破了旧教材从定义出发,由理论到理论,按部就班的旧格局,创造出从实践到理论再回到实践,由浅入深,符合认知结构的新模式。本节首先通过四个实际问题引出二次根式的概念,给出二次根式的意义。然后让学生通过二次根式的意义和算术平方根的意义找出二次根式的三个性质。本节通过学生所熟悉的实际问题建立二次根式的概念,使学生在经历将现实问题符号化的过程中,进一步体会二次根式的重要作用,发展学生的应用意识。
教学目标
知识与技能
1.知道什么是二次根式,并会用二次根式的.意义解题;
2.熟记二次根式的性质,并能灵活应用;
过程与方法
通过二次根式的概念和性质的学习,培养逻辑思维能力;
情感态度价值观
1.经历将现实问题符号化的过程,发展应用的意识;
2.通过二次根式性质的介绍渗透对称性、规律性的数学美。
教学重点和难点
重点:(1)二次根式的意义;(2)二次根式中字母的取值范围;
难点:确定二次根式中字母的取值范围。
教学方法
启发式、讲练结合
教学媒体
多媒体
课时安排
1课时
二次根式教案9
课题:二次根式
教学目标 1、知识与技能
理解a(a≥0)是一个非负数, (a≥0)
2、过程与方法
(1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想
方法
(2) 问题解决:能够利用性质进行二次根式的化简计算,能够互助
交流合作,分析问题,总结反思
3、情感、态度与价值观
体验成功的乐趣,锻炼克服困难的意志,培养严谨
求实的科学态度
教学重难点 教学重点:二次根式的概念
教学难点:二次根式中根号下必须为非负数
教学过程
一、课前回顾
(2分钟)
学生与老师共同回顾上节课所学内容,温故而知新。 什么是二次根式?
二次根式中字母的取值范围:
①被开方数大于等于零;
②分母中有字母时,要保证分母不为零。
③多个条件组合时,应用不等式组求解
一、情境引入(3分钟)
由生活中的实例引入投影的`概念,引起学生的学习兴趣
已知下列各正方形的面积,求其边长。
二、探究1(10分钟)
练习1:
计算下列各式:
三、探究2(10分钟)
可以发现它们有如下规律:
一般的,二次根式有下列性质:
练习2:
典型例题 例1:计算:
例2:计算:
达标测试(5分钟)
课堂测试,检验学习结果
1、判断题
2、若 ,则x的取值范围为 ( A )
(A) x≤1 (B) x≥1
(C) 0≤x≤1 (D)一切有理数
3、计算
4、化简
5、已知a,b,c为△ABC的三边长,化简:
这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。
应用提高(5分钟)
能力提升,学有余力的同学可以仔细研究 如图,P是直角坐标系中一点。
(1)用二次根式表示点P到原点O的距离;
(2)如果 求点P到原点O的距离
体验收获 今天我们学习了哪些知识
二次根式的两条性质。
布置作业 教材8页习题第3、4题。
二次根式教案10
一、教学内容
1、教学内容分析:二次根式是在数的开方的基础上展开的,是算术平方根的抽象与扩展,同时又为勾股定理和解一元二次方程打下基础.
2、学生情况分析:本节课是二次根式的第一课时,是在学生学方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.对此班级中已初步形成合作交流、敢于探索与实践的良好学风,学生间互相提问的互动气氛较浓.
二、教学设计理念
根据基础教育课程改革的具体目标,结合我校初二学生的实际情况,改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,实施“三学六步”课堂改革教学模式.
三、教学目标
1、知识与技能:
(1)了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围;
(2)理解二次根式的非负性.
2、过程与方法:通过对学、群学等方式培养学生分析、概括等能力.
情感态度与价值观:培养学生认真参与、积极交流的主体意识和乐于探索、积极钻研的科学精神、合作精神,激发学生学习数学的兴趣.
四、教学重点、难点
1、教学重点:了解二次根式的.概念,二次根式有意义的条件,并会求二次根式中所含字母的取值范围
2、教学难点:理解二次根式的双重非负性
五、教学方法、手段
1、教学方法:探究法、讨论法、发现法
2、教学手段:课件(ppt)
六、教学过程
(一)创设情境,导入新课
问题1 你能用带有根号的的式子填空吗?
(1)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系,如果用含有h 的式子表示 t ,则t= _____.
(2)下球体过球心的横截面面积为S,则横截面圆形的半径r为 .
(3)面积为3 的正方形的边长为_____,面积为S 的正方形的边长为_____.
【师生互动】:学生独立思考,用算术平方根表示结果,教师适当引导和评价.
【设计意图】:让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.
探究新知,讲授新课
1.抽象概括,形成概念
问题2 上面所得的代数式:,它们的共同特点是什么?
【师生互动】:学生独立思考并积极发言,教师归纳总结.
【设计意图】:通过归纳总结引出二次根式的概念.
问题3 根据以前所学知识,理解二次根式的定义,并且要注意什么.
【师生互动】:学生小组讨论并且小组长做好记录,老师归纳总结.
【设计意图】:加深对二次根式的理解.
2.辨析概念,应用巩固
问题4 (辩一辩) 判断给出式子是不是二次根式:①;
②;③;④;⑤;⑥
【师生互动】:学生独立思考并积极发言,并对于他们的答案做出正确地评价,给予必要的鼓励.
【设计意图】:该题是利用抢答来调动课堂气氛,理解二次根式的定义.
问题5 根据要求编写二次根式:
(1)请写出一个你喜欢的二次根式;
请写出一个被开方数含x的二次根式.;
请你写出一个被开方数含x,且当x为任何实数的二次根式.
【师生互动】:学生独立思考并积极发言,其他同学来检验是否编写正确.
【设计意图】:设计开放性题开拓学生思维,进一步加深对二次根式的理解.
灵活运用,巩固提高
问题6 当x是怎样的实数时,下列各式在实数范围内有意义:
【师生互动】:
(1)学生口答,老师板书规范解题格式,(2)(3)学生演板.学生完成之后小组讨论结果的正确性,同时对演板的同学做出评价,老师再适时补充,(2)(3)评价增加一道变式,让学生能灵活运用知识.最后再归纳这类式子有意义要注意:
(1)二次根式的被开方数为非负数;
(2)分母中含有字母时,要保证分母不为0.
【设计意图】:本题强化学生对二次根式被开方数为非负数的理解,同时考查学生的灵活运用的能力,训练学生的思维.
发散思维,拓展延伸
问题7 已知实数x,y满足,求:
(1)x的取值范围;
(2)以x,y的值为两边长的等腰三角形的周长.
【师生互动】:学生先独立思考,再小组合作,将答案写在白板上,并请小组两位成员上台展示,其他同学提出质疑,补充,老师适当引导点评.
【设计意图】:本题第一问进一步加深学生对二次根式被开方数为非负数的理解;第二问渗透分类思想,通过小组合作,上台展示体现学生为主体,发挥学生的能动性.
问题8 (走进中考)已知,则 p(x,y)是第 象限.
【师生互动】:学生先独立思考讲解思路,老师适当点评.
【设计意图】:本题主要考察
课堂小结,盘点收获
一路下来,我们结识了很多新知识,你能谈谈自己的收获吗?说一说,让大家一起来分享.
【师生互动】:学生举手发言,老师点评并鼓励.
【设计意图】:学生总结,互相取长补短,再一次突出本节课的学习重点,帮助学生把握知识要点,理清知识脉络,体会数学中的分类思想.
作业设计,巩固提高
必做题:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(写序号)
代数式有意义,则字母x的取值范围是 .
3.代数式的值为0,则a= .
选做题:1.已知,则的值为 .
2.若式子 有意义,则P(a,b)在第 象限.
小组合作题:
1.已知m,n满足 ,求:(1)m,n的值.
(2)将m,n的值 代入并化简:
(3)请选一个你喜欢的x的值代入求值.
【设计意图】:气氛通过分层作业,教师能及时了解学生对本节知识的掌握情况.必做题和选做题如果上课有时间打算用砸金蛋的形式调动课堂.
(六)板书设计
16.1.1 二次根式 定义:形如 的式子叫做 二次根式 注:(双重非负性) (老师板书) (学生演板)
二次根式教案11
一、内容和内容解析
1.内容
二次根式的除法法则及其逆用,最简二次根式的概念。
2.内容解析
二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.
基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.
二、目标和目标解析
1.教学目标
(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;
(2)会进行简单的二次根式的除法运算;
(3) 理解最简二次根式的概念.
2.目标解析
(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;
(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.
(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.
三、教学问题诊断分析
本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的`算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.
本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.
四、教学过程设计
1.复习提问,探究规律
问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动 学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.
五、目标检测设计
二次根式教案12
1.教学目标
(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;
(2)会用公式化简二次根式.
2.目标解析
(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;
(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.
教学问题诊断分析
本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.
在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.
本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.
教学过程设计
1.复习引入,探究新知
我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.
问题1 什么叫二次根式?二次根式有哪些性质?
师生活动 学生回答。
【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.
问题2 教材第6页“探究”栏目,计算结果如何?有何规律?
师生活动 学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.
【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.
2.观察比较,理解法则
问题3 简单的根式运算.
师生活动 学生动手操作,教师检验.
问题4 二次根式的.乘除成立的条件是什么?等式反过来有什么价值?
师生活动 学生回答,给出正确答案后,教师给出积的算术平方根的性质.
【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.
3.例题示范,学会应用
例1 化简:(1)二次根式的乘除; (2)二次根式的乘除.
师生活动 提问:你是怎么理解例(1)的?
如果学生回答不完善,再追问:这个问题中,就直接将结果算成二次根式的乘除可以吗?你认为本题怎样才达到了化简的效果?
师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外.
再提问:你能仿照第(1)题的解答,能自己解决(2)吗?
【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.
例2 计算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除
师生活动 学生计算,教师检验.
(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先写成二次根式的乘除再分解;
(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;
(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外.
【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.
教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.
4.巩固概念,学以致用
练习:教科书第7页练习第1题. 第10页习题16.2第1题.
【设计意图】巩固性练习,同时检验乘法法则的掌握情况.
5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)你能说明二次根式的乘法法则是如何得出的吗?
(2)你能说明乘法法则逆用的意义吗?
(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?
6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.
五、目标检测设计
1.下列各式中,一定能成立的是( )
A.二次根式的乘除 B.二次根式的乘除
C.二次根式的乘除 D.二次根式的乘除
【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.
2.化简二次根式的乘除 ______________________________。
【设计意图】二次根式是特殊的实数,实数的相关运算法则也适用于二次根式.
3.已知二次根式的乘除,化简二次根式二次根式的乘除的结果是( )
A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除
【设计意图】巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式.
二次根式教案13
一、学习目标:
1.多项式除以单项式的运算法则及其应用.
2.多项式除以单项式的运算算理.
二、重点难点:
重点:多项式除以单项式的运算法则及其应用
难点:探索多项式与单项式相除的运算法则的过程
三、合作学习:
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1.计算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2.提问:①说说你是怎样计算的②还有什么发现吗?
(三) 总结法则
1.多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______
2.本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
随堂练习:教科书练习
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的',同级运算从左到右的顺序进行.
E、多项式除以单项式法则
第三十四学时:14.2.1平方差公式
一、学习目标:
1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
二、重点难点
重点:平方差公式的推导和应用
难点:理解平方差公式的结构特征,灵活应用平方差公式.
三、合作学习
你能用简便方法计算下列各题吗?
(1)20xx×1999 (2)998×1002
导入新课:计算下列多项式的积.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
二次根式教案14
一、素质教育目标
(一)知识教学点
1.使学生了解最简二次根式的概念和同类二次根式的概念.
2.能判断二次根式中的同类二次根式.
3.会用同类二次根式进行二次根式的加减.
(二)能力训练点
通过本节的学习,培养学生的思维能力并提高学生的运算能力.
(三)德育渗透点
从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.
(四)美育渗透点
通过二次根式的加减,渗透二次根式化简合并后的形式简单美.
二、学法引导
1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的计算方法.
2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.
三、重点·难点·疑点及解决办法
1.教学重点二次根式的加减法运算.
2.教学难点二次根式的化简.
3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的'学习效果.
四、课时安排
2课时
五、教具学具准备
投影片
六、师生互动活动设计
1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.
2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.
3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.
4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.
七、教学步骤
(一)明确目标
学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.
(二)整体感知
同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.
二次根式教案15
教学目标
1、根据了解二次根式的概念:
2、知道被开方数必须是非负数的理由;
3、能运用二次根式的性质解决实际问题
4新设计:我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。
5、新设计:问题1平方根的概念,算术平方根的概念,平方根的性质。
6、学情分析:本班40名学生,成绩参差不齐,程度差距很大,鉴于此,对于学生要分层教学。
7、重点难点:1.重点:形如(a≥0)的式子叫做二次根式的概念;2.难点:运用二次根式的性质解决实际问题。
8、教学过程6.1第一学时教学活动
活动1【讲授】二次根式
教学过程设计
创设情境,提出问题
引言
我们知道,用字母表示数,可以将字母和数一起运算。前面已经学习了单项式、多项式和分式等概念和运算,可以发现,式的运算本质上就是对符号运用运算律所进行的形式运算。本节课主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的`加、减、乘、除运算。前面我们学习的平方根和算术平方根的概念和性质是学习二次根式的基础,我们先来回忆一下平方根和算术平方根的有关知识。
问题1平方根的概念,算术平方根的概念,平方根的性质。
师生活动:给学生充分思考和讨论时间,让他们回忆有关平方根和算术平方根的有关知识,才能在此基础上再进一步研究二次根式概念。
设计意图:回顾已学的数和式的运算,丛数和式运算的完整性角度提出要研究的问题,让学生了解本章将要学习的主要内容,起到先行组织者的作用。
问题2请思考下列问题
面积为3的正方形的边长为,面积为S的正方形边长为。
一个长方形围栏,长是宽的2倍,面积为130㎡,则它的宽为m。
一个物体从高处自由落下,落在地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h=5t2。如果用含有h的式子表示t,则t为。
师生活动:学生思考并完成上述问题,用算术平方根表示结果,教师进行适当引导和评价。关键是帮助学生实现从数的算术平方根到用含有字母的式子表示算术平方根的抽象。
设计意图:为概括二次根式的概念提供具体例子,同时发展符号意识。
抽象概括,形成概念
问题3上面得到的式子有什么共同特征?
师生活动:教师引导学生概括得出共同特征,并给出二次根式的定义。
追问1中a的取值有要求吗?为什么?
师生活动:教师引导学生讨论,分析共同特点,归纳得到二次根式的概念,并强调“被开方数非负”。
追问2二次根式有什么样的特点?
师生活动:给学生充分的思考和讨论时间,让学生总结二次根式的特点,教师归纳总结。
设计意图:采用从具体到抽象的方式,通过归纳的出二次根式的概念。
辨析概念,应用巩固
例1下列各式是二次根式吗?
师生活动:教师引导学生从二次根式的特征出发思考问题。
例2求下列二次根式中字母的取值范围:
师生活动:教师可以通过问题“观察各式被开方数是什么?你能根据二次根式的概念的带答案吗?”引导学生从概念出发思考问题。
追问:求二次根式中字母的取值范围的基本依据:
师生活动:给学生充分的思考和讨论时间,让学生总结回答,教师归纳总结。
问题4 x取何值时,下列二次根式有意义?
师生活动:学生抢答加分,调动学大亨的积极性。
设计意图:让学生独立思考,再追问。
问题5计算
师生活动:通过简单计算让学生总结规律。
例3计算
师生活动:学生直接回答。
设计意图:通过加分制调动学生的积极性,提高学生的注意力,通过练习巩固知识点。
问题7计算
师生活动:通过简单计算让学生总结规律。
追问:
师生活动:学生讨论回答,教师归纳总结。
设计意图:通过简单计算学生自己归纳总结二次根式的性质,加深学生的印象。
综合应用,深化提高
练习1学生完成教科书第3页的练习。
练习2若1<x<4,则化简
设计意图:辨别二次根式的概念,确定二次根式有意的条件。利用二次根式的性质解题。
小结
教师与学生一起回顾本节课所学主要内容,并请学生回答下列问题:
什么叫二次根式?二次根式有意义的条件是什么?二次根式的值的范围是什么?
二次根式与算术平方根有什么联系与区别?
我们以前学过整式、分式都能像数一样进行运算,你认为对于二次根式应该进一步研究哪些问题?
设计意图:共同回顾本节课学习的概念,再次练习算术平方根理解二次根式的概念,提出二次根式应该研究的问题。
布置作业
教科书习题16.1第1、2题。
教学反思:
1、在实际授课中,通过以下步骤让学生认识、理解、并掌握本节知识:
(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的两道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;
(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;
(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;……,本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。
2.在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。
3.让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。
4.在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。
5.在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。
【二次根式教案】相关文章:
二次根式教案模板汇编10篇04-24
二次根式教案模板汇编八篇04-24
《二次根式》教学反思02-07
二次根式教案范文汇总六篇05-03
二次根式的运算教学反思 12-22
二次根式教学设计10篇01-27
二次根式教学设计11篇05-31
数学《二次函数》优秀教案01-20
二次函数说课稿06-23
二次供水卫生管理规章制度07-24