五年级找次品教学设计

时间:2024-08-09 12:29:28 教学设计 我要投稿
  • 相关推荐

五年级找次品教学设计

  作为一位不辞辛劳的人民教师,常常要写一份优秀的教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么教学设计应该怎么写才合适呢?下面是小编精心整理的五年级找次品教学设计,仅供参考,希望能够帮助到大家。

五年级找次品教学设计

五年级找次品教学设计1

  [教学内容]

  小学数学五年级下册教材第134页例1、例2

  [教学目标]

  1、以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

  2、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  [教学重点]

  经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。

  [教学难点]

  脱离实物,借助纸笔帮助分析“找次品”的问题。

  [教、学具准备]

  5瓶口香糖,每生9张卡片,多媒体课件

  [教学过程]

  一、初步认识“找次品”的基本原理

  1、创设情境,自主探索。

  (1)出示口香糖,提出问题:同学们请看老师手中有3瓶口香糖,其中有一瓶老师已吃了2片,不小心把它们混在一起了,你能帮我把它找出来吗?

  (2)独立思考。教师鼓励大胆设想,积极发言。

  (3)全班汇报。教师指导学生认真倾听并且积极评价各种方案。

  回想一下用天平称物品会出现几种情况?

  出示课件演示天平平衡,不平衡两种状态

  2、自主探索用天平找次品的基本办法。

  (1)引导学生探索利用天平找次品的方法。

  (2)组织小组讨论,并进行汇报。

  学生:分三份(左盘、右盘、天平之外)

  老师小结:利用天平找到这瓶口香糖可以在天平两端各放一瓶,根据天平是否平衡来判断;如果天平平衡,说明剩下的一瓶是少的;如果天平不平衡,说明上扬的一端应该是少的。

  【设计意图】:通过生活实例一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳学习状态,同时让学生感受数学与生活的联系。

  二、初步认识“找次品”的基本解决手段和方法。

  1、出示问题,引导学生利用学具自主探索:如果这瓶吃过的混在5瓶口香糖中,你还能利用天平把它找出来吗?

  2、组织小组交流,指导同学在交流中比较方法。

  3、对几种方法的梳理、比较:“至少需要称几次就一定能找出?”请两位同学在黑板上演示(摆磁扣)。师把他们的操作过程记录在黑板上。要保证找出必须全面考虑平衡和不平衡两种情况。(板书)

  4、教师小结:在天平的帮助下同学们用两种方法找到了这瓶口香糖。除了利用学具,同学们出可以像老师这样画示意图来帮助我们思考。

  【设计意图】只让学生初步感知方法的多样性,为下一个环节的探究做好铺垫。

  5、提示课题。

  师:在日常生活中常常有类似情况,一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点,需要我们想办法把它们找出来,像这类问题我们把它叫做“找次品”。今天,这节课我们就研究如何利用天平找次品。(板书课题)

  三、从多种方法中归纳出找次品的最优方法。

  1、出示问题:有9个零件,其中有一个是次品(次品重一些),你用天平至少要几次就能保证找出次品?师:次品有什么不同?请你找出题中的关键词。

  2、在小组内交流。教师提交流要求:同学说想法,组长记录。

  4、全班汇报。(板书)

  5、教师先引导学生观察、比较,引导学生找出规律:把9个零件分成3份,并且平均分,能够保证找出次品的次数最少。

  【设计意图】:这一环节是重点也是难点,进行小组活动可发挥集体智慧,更易突破难点。

  四、验证多个零件找次品的解决方法。

  课件出示,猜想:当待测物品的数量是3的倍数时,平均分成3份,就一定能用最少的次数找到次品吗?

  如果有12个零件,其中一个是次品(次品重一些)按刚才我们的猜想应该怎么分,称的次数就最少而且一定能找出次品?还有哪些分法?

  学生分小组验证。汇报方法及称的次数。师:比较一下有没有比平均分成3份找到次品次数更少的?

  全班汇报,引导学生小结:这样看来在利用天平找次品的.时候,把待测物品平均分成3份,能保证找出次品而且称的次数一定最少。

  【设计意图】这里之所以需要验证,是因为这种归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用需验证

  五、运用知识解决问题

  在数学学习中,解决问题的方法是多种多样的,但通常有一种最有效最简便的方法,我们把它叫做最优化的方法。我们就用这种优化的方法解决下面的问题:

  1、有15盒饼干,其中的14盒质量相同,另有一盒少了几块,如果能用天平称,至少几次可以找出这盒饼干?

  2、如果是27盒呢?81盒呢?

  六、应用规律拓展延伸

  刚才我们分析的9、12和15都是3的倍数,可以分成3份,假如遇到不能平均分成3份的数,例如10、11……又该怎么分呢?课后请同学们试一试,看看哪种分法能保证找出次品而且称的次数最少。我们下节课再来研究这个问题。

五年级找次品教学设计2

  教学目标

  知识目标

  能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。

  能力目标

  让学生通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  重点能够借助纸笔对“找次品”问题进行分析。绿色圃中小学教育网

  难点解决问题策略的多样性及运用优化的方法解决问题的有效性。

  教学过程

  目标导学复习激趣目标导学自主合作汇报交流变式训练

  创境激疑(一)情境导入、激发兴趣。

  1.生产中多少会产生次品,这就需要质检员找出次品,今天就请你们来充当质检员,上岗前要对大家进行简单测试,看看你们的.观察力和分析能力怎么样?

  出示3组图片,前两组图中有一个次品,找出来,说根据。

  2.师:在我们的日常生活中,也常常有这样的情况,有些物品看起来完全一样,但事实上重量不同,要么重一点要么轻一点的次品,混在合格产品里面。这节课我们就一起来研究如何“找次品”。(板书:找次品)

  合作探究(二)初步认识“找次品”基本原理。

  1.出示钙片提出问题:这里有3瓶钙片,其中有一瓶少了3粒,你能用什么办法把它找出来吗?师:对,我们可以用天平来帮忙找出次品。

  2.让生根据讨论题同桌互相说说方法。3.学生汇报方案并上台边讲边在天平演示。师据生回答板:3(1,1,1)1次

  (三)初步认识“找次品”的基本解决方法。

  1.老师又拿来了两瓶钙片,和前面的三盒混在一起,你还能用天平将那盒少了两粒的钙片找出来吗?小组讨论:

  (1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?

  (3)假如天平不平衡,次品又在哪里?(4)至少称几次就一定能找出次品来?

  2.老师在投影上演示,边演示边讲。

  (四)从多种方法中,寻找“找次品”的最佳方案。

  “刚才大家都很聪明,都能在几盒钙片里找出轻的那盒次品来,那如果有的次品是比较重一些的,那你又能不能把它找出来呢?”

  1、课件出示例2,有8个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?

  2、让学生分析讨论。(1)让学生以四人为一小组,讨论,然后把结果填在表中。零件个数分成的份数保证能找出次品的次数(2)汇报交流。

  总结这样看来在利用天平找次品的时的最好方法:一是把待测物品分成三份;二是要分得尽量平均。

  作业布置第113页练习二十七,第1题、第2题、第4题。

  第114页练习二十七,第5题、第6题。

五年级找次品教学设计3

  教学内容:

  新人教版小学五年级数学下册第八单元《数学广角———找次品》

  教学目标:

  1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。

  2、学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。

  3、通过解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重、难点:

  让学生经历“比较——猜想——验证”的过程,寻求找次品的最优策略。

  学情分析:

  “找次品”的教学内容在“奥数”活动中时有出现,用图形帮助思考,对培养学生动手能力和思维能力都是比较好的,学生虽然是初次接触,但只要通过动手实践、小组讨论、探究等方式来解决问题,掌握一题多解的方法还是不难的。关键是最优化的解决策略,学生总结方法时有些难度,教师要适时引导。

  教学过程:

  一、弄清问题题意,激发探究欲望

  师:今天这节课,我们就从某公司招聘员工的一道题目开始,假定你就是应聘者,想不想接受一下智慧的挑战?(出示课件)

  问题是:假如你有81个外观完全一样的玻璃球,其中有一个球比其它的球稍轻,属于次品,如果只能利用没有砝码的天平来断定哪一个球轻,请问你最少要称几次才能保证找到较轻的那个球?

  (一分钟思考)学生汇报:1次、2次…

  师:请只用1次的同学说一说,你是怎样想的?

  生1:

  生2:

  师:看来,1次虽少,但只是有可能,不能保证找到那个次品球,所以我们在思考这个问题的时候,不光要最少,还要以保证能找到为前提。

  师:如果以“保证能找到”为前提,在同学们这么多的答案中,哪个次数是最少的呢?这一节课我们就一起来研究这个问题一一找次品。

  二、简化问题,经历问题解决基本过程。

  对于从81个小球中找次品的问题,比较复杂,那么怎样开始我们今天的研究呢?

  生:可以从最少的试一试。

  师:如果从最简单的入手研究,2个小球至少称几次?

  生:1次。

  师:如果是3个呢?

  生猜测:2次?3次?1次?

  师:老师这里有3瓶口香糖,其中有一瓶少了3粒,你觉得应该怎样称?

  生汇报:先把其中的2瓶放在天平的两侧,如果左边下沉,就说明右边的是次品;如果右边的下沉,就说明左边的是次品;如果天平平衡,则没称的.是次品。(学生边说老师边配合进行称量演示。)

  师边演示课件边带领学生进一步感受推理过程:虽然有3瓶,而天平只有两个托盘,但是只需要把其中的2瓶放在天平的两侧,可能平衡,也可能不平衡,如果平衡如果不平衡不论是否平衡,利用推理,只要称1次肯定能将那个次品找出来。

  师小结:看来2个和3个虽然数量不同,但是都只称1次就可以将次品找到。(将探究结果记录在表格中)

  三、再次探究“关键数目”,初步感知、归纳规律

  1、探究4个小球的情况。

  (1)师:如果再增加一个球,现在有4个球,其中有一个是次品,一次可以保证找到次品吗?

  生猜测:4次?3次?

  师:纸上得来终觉浅,绝知此事要躬行。咱们还是亲自动手探究一下吧。请同学们与自己的同桌共同讨论一下。可以借用小方块摆一摆,也可以在纸上画一画,不论用什么样的方式,都要将思考过程简要记下来。

  (生分组研究)

  师:4个小球时,你们称了几次?

  (生边汇报师边板书枝状图)

  师:4个球有两种不同的测量方法,但结果测量的次数都一样,至少要2次才能保证找出次品。(把结果记录在表格中)

  师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?请同学们用学具摆一摆,用笔画一画。

  (生汇报师出示课件)

  师:为什么把9个球分成(3,3,3)只要2次就可以找到次品呢?

  (引导学生发现规律,把结果填入表格中)

  师:4个球只需要2次就可以保证找到次品,9个球也只需要2次就能保证找到次品,那么大胆猜测一下,在4与9之间的5、6、7、8个球,至少需要几次就能找出次品呢?现在我们分组来研究一下:第1大组的同学研究5个小球的情况,依次研究6、7、8个球。

  (生汇报,重点是8个球)(把结果填入表格中)

  师:我们来比较一下,我们将8个小球分成(3,3,2)三组称2次,可是把8个小球分成(4,4)两组却称了3次,多称了1次,多称的1次多在哪儿呢?

  生:小球数是2和3个时只用一次,把8分成(3,3,2)每组是3个或2个,3个或2个都只需要称1次就能找到次品。

  师:你们明白他的意思吗?你们看,称(3,3)或(4,4),都只称1次就能确定次品在哪边,可是接下来,第一种是在3个或2个里找,只需一次,第二种要在4个里找,要用2次,所以会多一次。

  师:大家最后称的次数不同,原因是什么呢?

  生:分的组数不同,每组数量也不同。

  师:那到底怎么分,才能既保证找到次品,又能使称的次数尽可能少呢?

  (生分组讨论后汇报)

  生1:应该分3组,因为天平有2个托盘

  生2:每组的数目还要少。

  生3:尽可能让每组数目比较接近,每次称完,次品就被确定在更小的范围内。

  师:你们太了不起了,通过我们刚才的试验、讨论、交流,不仅解决了问题,而且发现了其中分组的秘密规律。

  (师板书:分3组,尽量平均分。)

  四、进一步发现规律

  师:现在我们就应用分组的规律,再来一次实验,如果小球个数是10个(课件),该怎么分?称几次?

  (生汇报,师板书:10(3,3,4)3次)(课件)

  师:如果是27个呢?(课件)

  (生汇报,师板书:27(9,9,9)3次(课件)

  师:这位同学说的太好了,他先是分成了3组,然后用转化的思想把问题变成我们前面解决的9个小球的找次品问题了。

  看来大家都掌握了分组规律。最开始的招聘问题,81个小球,大家能解决了吗?谁有了答案?把结果直接写在黑板上。

  (生讨论并汇报结果)(课件)

  师:你能发现它和前面我们解决的27个,9个,3个,有什么关系吗?

  (小组研究)

  生汇报:被测小球数目是几个3相乘就称几次,比如4个3相乘是81,81个小球就只需称4次。

  师:你们很了不起,既解决了公司“招聘”问题,又发现了“被测物品数目与称的最少次数之间”神秘的规律。

  五、课堂小结

  随着招聘问题的解决,今天的课也即将结束,回顾我们整节课的经历,从最初的招聘问题,回归到解决2、3的问题,再到研究8、9发现分组规律,直至研究了更大的数目,像27、81这样的数目,发现了被测物品数目与称的最少次数之间的一些关系。

  在这一路的探究过程中,我们不断思考,不断实践,不断发现,我想大家在收获知识的同时,一定收获了更多的智慧。最后有两句话与大家共勉:(课件出示)

  探究问题,学会化繁为简

  解决问题,要有优化意识

五年级找次品教学设计4

  教学目标

  1.通过观察、猜测、实验、推理等活动,体会解决这类问题策略的多样性及运用优化的方法解决问题的有效性。

  2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  3.培养学生的合作意识和探究兴趣。

  教学重点和难点

  教学重点:让学生经历观察、猜测、实验、推理的活动过程,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  教学难点:观察归纳“找次品”这类问题的最优策略。

  教学准备

  学生4人一组;多媒体课件;立体图形。

  教学流程

  一、创设情境、导入新课。

  在学习新内容之前我想考考大家的眼里,要不要挑战一下?(幻灯片出示内容)

  1、师:请找出不同类的一项

  2、师:为什么我们找不到不同类的项?对因为这个物品的.形状是一样的,但从外表是看不出不同的。可是它们的确有不同,那他们会有哪些方面出现不同呢?对就是是质量上的除了问题。其中一个一瓶钙片不合格,少了三片,我们称它为次品。谁有办法能从这五瓶钙片中找出次品?

  (用手掂一掂、用称称)

  3、师:用手一定能掂出来次品吗?(不一定)为什么不能?(相差太少的就掂不出来了)那最好的办法是什么?(用天平秤)

  4、师:好今天老师就跟大家一起学习利用天平找次品的方法。

  板书:找次品

  二、初步感知、寻找方法。

  师:现在我就以次品钙片入手,谁能用你自己的方法用天平称吃出次品?

  【学情预设:学生根据自己的实践情况,会出现两种方案:①是把零件一个一个的称,需要称2次;②是在天平的两边各放2个零件,也需要称2次。在这里不急着评价哪种方法最好,只是让学生初步感知方法的多样性,为下个环节的探究做好铺垫。】

  物品个数怎么分称完第一次确定几个正品称几次一定找到次品

  53(2、2、1)32

  55(1、1、1、1、1)22

  二、初步感知、寻找方法。

  1、师:用二种方法都能只需一次第一次就能找到次品,这种几率大不大?(不大)遇到这种情况我们该怎么办?我们应该做好最坏的打算。

  2、师:在这里老师用提醒你了(幻灯片提示:当我们选用一种方法来分析和研究问题时,应注意那可能出现的结果考虑全面,才能得出正确的结论。)也就是说,我们想要保证找到次品(板书:保证)就一定要找出至少需要的次数。(板书:至少。)

  【设计意图:让学生初步感知用天平找次品的方法。借助多媒体课件的演示,让学生明白解决问题中的偶然性和多样性,培养学生思维的严密性。】

  三、自主探究、方法多样。

  1、师:我想问问同学们那些物品的个数能一次找出次品?(2个)3个呢?

  我现在就准备了三个盒子,其中一个是次品盒,质量比较轻谁能帮我找出这个次品盒?

  3(1、1、1)一次,3(1、2)行吗?

  2、师:我们在称重的时候要保证天平两边数量相等,才能找到次品盒。(天平左右两盘物体数量相等)

  3、师:现在我每个盒子里都有九个球,有一个是次品球,质量比较轻,请问如何找次品球?分组讨论把那么的方法写在答题卡上。

  物品个数怎么分称第一次确定几个正品称几次一定找到次品

  99(1、1、1、1、1、1、1、1、1)24

  94(2、2、2、2、1)43

  93(4、4、1)53

  93(3、3、3)62

  4、师:请观察这几种方法,你认为那一种方法最好?

  5、师:观察表格、比较并展开讨论:想想为什么方法4的次数是最少的?你觉得它会和什么有关系呢?

  【学情预设:学生可能提出:⑴因为方法4第一次就排除6个正品,它排除的个数最多。⑵把物品平均分成3份。】

  6、师小结:通过两个例题,我们明白在找物品的次品时,把检测的物品平均分成3份是最好的。

  7、师:那谁能告诉我,刚才咱们是从几个球里面找出来的次品球?(27个)。

  我现在有27个球,用咱们刚才总结出来的方法,该如何找出次品球?

  27(9、9、9)9(3、3、3)3(1、1、1)

  8、81个球能至少秤几次能保证找出次品球?

  【设计意图:让学生在实际操作中尝试“找次品”的各种方法,通过观察、比较,并从中优化出平均分三份的方法是最好的。】

  四、拓展提高,优化方案。

  1、师:那么8个呢?物品个数和前几个数字有什么区别?(不能平均分成3份。)

  2、师:请把你设计的方案写在表格中。

  (独立完成,口头汇报设计方案。)

  生反馈设计方案。

  【学情预设:学生的回答可能有以下两种方案:①把8个物品平均分成2份,每份4个,最少需要称3次才一定能找到次品;②把物品分成3份(3、3、2),这种方案只要称两次就一定能找到次品。也有个别的学困生会出现把物品分成8份的。教师不要急于提示学生更正,要给学生留下发现问题的机会。】

  3、师:刚才我们知道了把物品平均分成3份是最好的。而这里是8个球,不能平均分成3份。你认为应该怎么办最好?

  物品个数怎么分称第一次确定几个正品称几次一定找到次品。

  88(4、4、0)43

  88(3、3、2)62

  4、师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。也就是最多的份数与最少的份数的个数只差1个。就能用最快的方法一定把次品找出来。

  【设计意图:给学生创设自主学习的空间,充分发挥学生的主体性,让学生通过对比,自悟出找次品的最优方案,使求知成为学生自觉的追求,促使学生对学习产生了强烈的需求,突破了教学的重难点,培养了学生的解决问题的能力。】

  五、巩固发展:

  用学到的方法解决从6、7、8、12个物体中至少几次能保证找出次品。(实物演示)

五年级找次品教学设计5

  一、教学内容

  人教版《义务教育课程标准实验教科书数学》五年级下册第134页—135页。

  二、教材分析:

  《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

  “找次品”的教学,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以“找次品”这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

  三、学情分析:

  五年级的孩子普遍具有求知欲高、模仿能力强、喜欢动手操作的特点,正处于从形象思维向逻辑思维过渡的阶段。本节课是一节思维训练课,具有一定的难度。学生的探究活动需要用到天平,在上学期学习等式性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。

  通过前面相关知识的学习,学生已经具有了一定的分析概括能力、思维能力、归纳总结的能力、发现事物隐含的规律的能力,对简单的优化思想等也有一定的了解。因为本节课学习内容难度比较大,所以不要求所有同学都能够理解和灵活运用。

  四、教学目标

  (一)知识技能目标:

  1、能用简洁的方法记录找次品的过程,并能有条理地进行交流。

  2、能够准确的从多个测品(只含有一个次品)中找出一个重一些或轻一些的次品。

  (二)数学思考目标:

  1、学生通过观察、猜测、试验、推理等活动,经历严密的推理过程,让学生感悟到从多个测品中找一个重一些或轻一些的次品的方法;

  2、体会到解决问题策略的多样性及运用优化的方法解决问题的有效性,同时重在培养学生的推理能力。

  (三)问题解决目标:

  1、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  2、初步培养学生的应用意识和解决实际问题的能力。

  (四)情感态度目标:

  1、积极参与找次品的活动中,体会学习数学的快乐,感受数学的魅力。

  2、体验获得成功的乐趣,不断提升自我成功感,建立学习数学的信心。

  3、通过不断引领,鼓励学生质疑。

  五、教学重、难点

  教学重点:在找次品过程中,经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。

  教学难点:

  1、突破学生对“至少”“保证”的理解:在保证找到次品的.前提下再考虑用最少的次数;

  2、发现“分成三份,尽量平均分”是最快的方法。

  六、教学准备:

  多媒体课件、学具

  七、教学程序

  一)、课前活动、营造氛围、吸引学生

  随机导出课题并板书:找次品。

  老师这边有2块奖牌,其中就有1瓶次品,次品比较轻。各位同学有哪些办法能够找出这瓶“次品”?这个问题同学们先独立思考一下,有办法的同学举手。

  师:天平有两个托盘,如果两个托盘里的物品质量相等,天平就保持平衡,如果不相等,轻的一端就会怎么样(上扬),重的一端就会怎么样(下沉)。

  师:在生活中常常有这样一些情况,在一些看起来完全相同的物品中混着一些不合格的物品。它们质量不同,轻一点或者是重一点,我们习惯把这类物品称之为“次品”。(板书课题:次品)

  (设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解“至少称几次就一定能找到这个次品” 的含义,在此基础上让学生明白:当我们选用一种方法来分析研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略做好准备。)

  二)、初步认识“找次品”的基本解决手段和方法

  1.设疑:

  师:刚才3个盒子中有一盒是次品,利用天平来称,至少几次就一定能找出次品?

  2、学生上台展示

  生:天平两端各放1瓶,(是任意拿的吗)如果天平两端平衡,那次品就在天平外的那瓶;如果天平两端不平衡,那次品就在上扬的一端。

  三)、解决9件物品中有一件是次品的问题,归纳出找次品的最优方法。

  1、出示问题:9瓶中有一瓶是次品,用天平秤来称,至少几次可以保证找到次品?教师引导分析方法:你可以用圆片摆一摆,也可以像老师这样做记录,看看至少需要几次就一定能找出次品。

  2.自主探索。(设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。))

  3、学生汇报称法:

  生1:(3,3,3)→(1,1,1)2次

  生2:(4,4,1)→(2,2)→(1,1)3次

  生3:(2,2,5)→(2,2,1)→(1,1)3次

  4、教师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?

  提示:这种方法一开始就怎么分的?分成了几份?

  5、小结:把9瓶口香糖分成3部分,并且平均分,能够保证找出次品而且称的次数最少。板书:平均分成3部分(设计意图:小组汇报时将学生的实验记录表展示出来,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其他任何一种分法都比2次要多,这样便于学生发现规律。)

  四)、验证规律、感悟内化

  如果有12瓶,(板书:12)其中有一瓶是次品,按刚才我们的猜想应该怎么分称的次数就最少而且一定能找出次品?(生:平均分成3份,即4,4,4)。迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?

  我们再来看看别的分法能不能比3次更少。还有哪些分法?

  请同学们选择一种分法在纸上进行分析。

  全班汇报,引导学生比较:有没有哪种分法能让称的次数更少而且保证找出次品?

  与学生一起小结:这样看来在利用天平找次品的时候,把待测物品分成3份,并且平均分的方法能保证找出次品而且称的次数一定最少,这说明我们刚才的猜想是对的。

  五)、交流比较、总结提升、思考延续

  分析:为什么平均分成3份称量次数是最优的方案。

  六)、实践练习,巩固提高

  师:让我们运用这个规律来解决生活中的一个实际问题。

  出示习题:有15盒饼干,其中有一盒吃了几块,你能把这一盒从中找出来吗?

  (学生练习,交流汇报解题方法。)

  (设计意图:数学源于生活并服务于生活。把课堂学习与实践运用紧密结合起来,培养学生应用意识和解决实际问题的能力,既是本节课的主要目标之一,又进一步让学生体会数学与生活的紧密联系。)

  师:通过这节课的学习,你有哪些收获?对你自己的学习还满意吗?

  板书设计: 找次品

  9(3,3,3)→3(1,1,1) 2次 保证 至少

  9(4,4,1)→(2,2)→(1,1) 3次

  9(2,2,5)→(2,2,1)→(1,1) 3次

五年级找次品教学设计6

  【课前思考】

  “找次品”是人教版教材五年级下册(数学广角)的内容,旨在通过“找次品”渗透优化思想,培养推理能力,让学生葱粉感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。教材以“找次品”这一探索性操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理等方式体会运用优化策略解决问题的有效性,感受数学的魅力。

  “找次品”问题是学生从未接触过的、需要重新建构的内容,学生会有新鲜感和探索求知的欲望。但对于大多数同学而言,它又是一个高难度的充满挑战的内容,因此部分同学在学习时会有一定的困难。

  本课的教学内容比较多,学习这些内容需要比较高的思维水平。如何让学生正在地参与课堂的探究活动、解决问题并在此过程中感悟发现规律呢?我做了如下的教学设计进行实践探索。

  【教学目标】

  1.通过观察与操作,猜想验证和推理,体验找次品方法的多样化和最优化,发现和理解“把物品总数平均分成三份来称,保证找出次品的次数会最少”。

  2.通过找次品的探究活动,渗透“化归”和“优化”的数学思想,培养合情推理能力,提高表达交流的能力,养成全面思考的习惯。

  3.经历由直观演示操作逐步到逻辑推理抽象概括,体会数学的简洁美和神奇魅力,激发学习数学的兴趣。

  【教学重点】

  探索出找次品方法的多样化和最优化方法,理解和体会最优方案的特点。

  【教学难点】

  1.能够用简明的方法记录找次品的思维过程。

  2.在观察、比较中初步体会找次品最优方案的特点。

  【课前准备】

  纸质天平、棋子、操作记录单、课件

  【课前游戏】

  摸奖游戏

  1.课件:从8个笑脸中摸一个奖品(从8个中摸中一个真不容易)

  师:要使中奖容易些,你会增加笑脸的个数,还是减少笑脸的个数?

  2.从4个笑脸中摸奖(体会更容易中奖)。

  3.从2个笑脸中摸奖(体会“保证”意义)。

  师:要保证中奖,我们得摸几次?

  【设计意图:数学教学要考虑学生的认知发展水平和已有的经验。逐步逼近缩小范围的数学思想是有生活原型的,通过这个游戏,激活了学生生活经验,同时调动了学生上课的积极性。】

  【教学过程】

  一、情境导入

  师:你知道3月15日是什么日子吗?(消费者权益保护日)

  师:在315晚会上老师看到这样一则新闻:(课件出示)

  一些不法商人往黄金里加金属铱冒充千足金来销售,加铱后的黄金用肉眼无法辨别,但重量会增加。

  (你了解了哪些信息?)

  【设计意图:用生活情境引出学习课题,感受数学源自生活。】

  过渡:像这种不合格的产品,我们称之为次品,数学中有一类经典的智力问题叫“找次品”,这节课我们就一起来学习找次品。(板书课题)

  二、新知探究

  1.在2个物品中找次品

  (课件出示题目)现在有2个外形和颜色一样的金元宝,其中有一个是加了金属铱的次品(次品重一些),现在请你当黄金检测师,你有什么办法找出这个次品?

  (预设:用天平称,天平左右各放1个,往下沉的那个就是次品。)

  师:(课件出示天平)能根据重量的轻重,用天平来找次品。在2个金元宝中找一个次品,只要称1次就能找出次品。

  【设计意图:明确用天平来找可在重量方面检测出次品的`问题。】

  2.在3个物品中找次品

  (课件出示题目)现在有3个这样的金元宝,有一个是次品(次品重一些),你也会用天平找出这个次品吗?需要称几次?

  预设1:需要2次,我在天平两边各放1个,如果平衡,拿下一个再换另外一个,就会下沉,下沉的那个就是次品。

  预设2:需要1次,我在天平两边各放1个,如果不平衡,下沉的那个就是次品;如果平衡,那没称的那个就是次品。

  (1)你会更欣赏谁的方法?为什么?

  【设计意图:感受检测出次品需称的次数可以尽可能少。】

  (2)统一记录方法

  为了便于交流和记录,我们可以这样记(结合操作步骤):

  ?3个物品,可以用一根横线来表示天平,(板书:)

  可以先在天平两边任意各放1个,(板书:1,1),

  剩下1个在天平外面。(补充板书:3(1,l,1))

  ?这时天平可能会平衡,也可能不平衡(板书:平不平),如果是平衡,天平外那个就是次品,需称一次就找出了次品;如果不平衡,次品就是下沉的那一个,也只需要称一次就找出了次品。3(1,1,1)

  不平1次

  【设计意图:能够用简明的方法记录找次品的思维过程。】

  3.在5个物品找次品

  (1)想一想:5个金元宝中找一个次品(次品重一些),需要称几次才能找出这个次品?你会怎么称?

  (2)小组合作,把称的方法记下来。

  (3)小组汇报称法

  预设1:在天平的左盘放1个,其余4个逐个放在右盘,直到找到次品为止。

  预设2:在天平的左右两边各放2个,如果平衡剩下那个就是次品,1次找出了次品;如果不平衡,次品就在较重的那2个里面,再把较重的那2个放在天平的左右两边再称一次,这样2次就找出次品了。

  记录:5(2,2,1)

  不平2(1,1)2次

  预设3:5(1,1,3)

  不平1次

  直观演示:课件演示称法

  (4)理解“保证”“至少”的意义:我们找出了多种称法。要保证找出这个次品,至少要称几次?

  天平有平衡和不平衡两种情况,我们不能保证一定衡,所以要保证找出我们就要考虑不平衡的情况,也就要做最坏的打算。并且在能保证找出次品的情况下,称的次数可以尽可能的少。

  (板书擦出不能保证,也不是最少次数的情况,写上“保证找出,至少2次”)

  【设计意图:感知称法的多样化,理解“保证”“至少”的意义。】

  4.在8个物品中找次品

  (1)想一想:8个中有1个次品(次品重一些),有几种称法?至少要称几次才能保证找到次品?(2)猜一猜:

  ①猜一猜,会有哪些称法?

  (4,4)(2,2,2,2)(1,1,6)(2,2,4)(3,3,2)

  ②猜一猜:哪种称法保证找出次品的次数会最少。

  (3)同桌合作合作验证猜想。

  (4)汇报交流

  (5)优化选择:多种称法,如果让你来选择,你会选择哪种称法?为什么?

  (3,3,2)(保证找出次品的次数最少)

  (6)反思:是不是分的组越多就越好?或者越少就越好?

  【设计意图:优化称法。】

  5.在9、10个物品中找次品

  学生自主选择从“9个中找一个次品(次品重一些)”或“10个中找一个次品(次品重一些)”进行再次实践。

  预设:学生能较快找到具体的答案9个(3,3,3)称2次;10个(3,3,4)或(2,2,6)(4,4,2)均为称3次。

  【设计意图:较为开放的环节,学生按照自己的认识和理解自主选择方法,从而更好地引导学生发现规律】

  6.发现规律,发现数理

  (1)观察思考:结合几次称量的情况进行对比,这些不同的情况之中有什么共同之处吗?

  预设:都是分成三组,每组中的数据都很接近,而且都有两个以上的数据是相同的。

  (2)继续观察:称8个、9个的最佳办法都是唯一的,而称10个出现了三种分三组的办法,再观察,这三种方法哪一种和称8个、9个的办法更相似?

  (3)发现规律:你认为以后不管遇到怎样的数,怎样称就能很快找到答案?

  预设:只要尽可能平均分三组就行了。

  为什么每次不多不少总是分三组好?

  【设计意图:发现规律,总结方法,形成解决问题的策略。】

  三、规律应用

  有28瓶水,其中27瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

  【设计意图:巩固理解,体验成功。】

  四、总结

  (1)都说数学都思维的体操,相信这节课同学都有收获说说你都收获了什么?

  (2)你还有什么疑问吗?(可看书质疑)

  板书设计:

  找次品

  3(1,1,1)

  不平1次8(1,1,6)8(2,2,4)

  8(3,3,2)2次

  5(2,2,1)

  不平2(1,1)2次9(3,3,3)2次

  5(1,1,3)五年级下找次品教学心得体会共2

  在一批产品中,有16个零件,其中有一个是次品,用一架天平来检查出那个次品,最少用3次可以称出,为什么?

  满意回答

  找次品的问题是有规律的。

  一般都是分成aab三份。b可以等于a。b也可可能等于a+1或者a到1,根据总数决定。

  把两个a放在天平两端,如果天平平衡,次品就在b里头,如果天平不平衡,则根据次品和正品的差别找出次品在哪一份。找到之后继续往下分三份。

  这样一次就能排除掉三分之二,是最快的。1到3个,一次就可以搞定。4到9个,需要两次。10到27个。需要3次。28到814次82到243

  5次

  244到729

  6次

  16个的话第一次分成5个5个6个

  可以找出是在某5个还是在某6个再找两次就保证找出了

五年级找次品教学设计7

  教学目标:

  1.能够借助纸笔对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。

  2.以“找次品”为载体,让学生通过学习观察、猜想、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

  3.感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学重点:用数学方法来解决实际生活中的简单问题。

  教具准备:多媒体课件、5盒口香糖

  学具准备:9个正方体

  教学过程:

  一、情境导入

  电脑出示图片:美国第二架航天飞机,再出示它爆炸的图片。

  电脑解说:1986年1月28日,美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。据调查,这次灾难的主要原因是生产了一个不合格的零件引起的。

  师:可见,次品的危害有多大,在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个质量不同的,重一点或轻一点的物品。需要想办法把它找出来,我们把这类问题叫做找次品。

  师:下面我们一齐来研究找次品。

  出示课题:找次品

  二、初步认识“找次品”的基本原理

  1、自主探索。

  A出示口香糖:老师这儿有三盒口盒糖,其中有一盒是吃了两粒的,你说有什么办法帮忙将它找出来吗?

  师:对,我们可以用天平来帮忙找出次品。

  让生根据讨论题同桌互相说说方法:

  电脑出示:同桌说说:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?

  B学生汇报方案并上台边讲边在天平演示。

  师据生回答板:3(1,1,1)1次

  2、老师又拿来了两盒口香糖,和前面的`三盒混在一起,你还能用天平将那盒吃了两粒的口香糖找出来吗?

  A出示:小组讨论:(1)你把待测物品分成几份?每份是多少?(2)假如天平平衡,次品在哪里?(3)假如天平不平衡,次品又在哪里?(4)至少称几次就一定能找出次品来?

  让生根据讨论题在学习小组讨论交流,把自己的想法说给小组其他成员听。

  B学生在投影上演示,边演示边讲。

  师据生回答板:5(2,2,1)2次

  5(1,1,1,1,1)2次

  三、从多种方法中,寻找“找次品”的最佳方案“9”

  “刚才大家都很聪明,都能在几盒口香糖里找出轻的那盒次品来,那如果有的次品是比是重一些的,那你又能不能把它找出来呢?”

  1、课件出示例2,有9个零件,其中有一个是次品(次品重一些),用天平称,至少称几次就一定能找出次品来?

  让生自己审题,并找出重点、关键的词语,课件用点标出重点词语:次品重、至少、

  一定。

  2、让学生拿出九个正方体,把它当作这几个零件,自己根据刚才的讨论题,说说方法,如果想到有几种方法的,都将方法说出来。

  然后让生说说方法,师据生回答板:

  零件个数分成的份数保证能找出次品的次数

  93(4,4,1)平

  不平4(2,2)不平2(1,1)3次

  93(3,3,3)平3(1,1,1)

  不平3(1,1,1)2次

  95(2,2,2,2,1)平(2,2)平不平2(1,1)

  不平2(1,1)3次

  99(1,1,1,1,1,1,1,1,1)4次

  3、观察分析,寻找规律。

  “好,刚才我们在9个零件里找次品,方法就有四种了,如果待测物品更多一些,那方法也会更多,如果每次都这样找的话就比较?(麻烦、复杂)对,那我们能不能找出一些规律呢?”

  “同学们观察表格,那种方法最简便、最快的?称几次就一定能找出次品来?”

  “那这种方法我们分成几份?是怎么分的?”(分成三份,并且平均分)

【五年级找次品教学设计】相关文章:

《找次品》教学反思09-16

找次品说课稿01-10

找质数教学设计11-18

《找春天》教学设计06-02

找规律教学设计03-30

《找骆驼》教学设计11-06

课文《找春天》教学设计03-03

《找骆驼》教学设计15篇05-17

《找春天》教学设计 15篇06-12