六年级数学下册教案

时间:2024-07-17 14:58:15 教案 我要投稿

六年级数学下册教案

  作为一名为他人授业解惑的教育工作者,通常会被要求编写教案,教案是备课向课堂教学转化的关节点。写教案需要注意哪些格式呢?以下是小编帮大家整理的六年级数学下册教案,欢迎阅读与收藏。

六年级数学下册教案

六年级数学下册教案1

  【学习目标】

  1.了解利率调整的原因;知道如何是收益最大;了解千分数、万分数的概念。

  2.让学生获得运用数学知识解决实际问题的能力。

  【学习重难点】

  正确地计算利息,解决利息计算的实际问题。

  【学习过程】

  一、知识铺垫。

  1.什么叫利率、本金、利息。

  2.利息的计算方法是什么?

  二、自主探究。

  李阿姨准备给儿子存2万元,供他六年后上大学,银行给李阿姨提供了三种理财方式:普通储蓄存款、教育储蓄存款和购买国债。

  根据题意,李阿姨有几种选择?分别是什么?

  三、课堂达标。

  1.李伯伯想把2000元存入银行,有两种选择。第一种是买两年国债,年利率为4.5%;另一种是买银行一年期理财产品,年利率为4.3%,那种方案收益更大?

  2.商场有两种品牌的衣服,售价均为240元。甲品牌衣服“折上折”,就是先打六折,在此基础上再打九折;乙品牌衣服满200元减100元。哪种品牌的衣服更便宜?

  3.某旅游团共有成人12人,学生7人,他们去到一个景点观光,以下是导游了解到的门票报价:

  A.成人票每张30元;

  B.学生票半价。

  C.满20人可以购团体票,打七折。

  如果你是其中的'一员,你会制定什么方案?

  4.某食品公司去年第四季度营业额按照5%纳税,税后余额为57万元。该公司第四季度纳税多少万元?

  5.华联超市迎“五一”进行促销,百事可乐“买10赠3”;文峰超市也进行促销,百事可乐打七折销售。已知两家超市的百事可乐原价都为4元一瓶。六二班要买40瓶可乐在哪家超市买比价合算?

  6.小林家去年种植水稻收成为1500kg,今年预计比去年增产一成。今年水稻总产量预计是多少千克?

  四、拓展练习。

  赵阿姨有1000元钱,打算存入银行两年。有两种储蓄办法:一种是存两年期的年利率为3.75%,一种是先存一年期的,年利率为3.25%,第一年到期再把本金和税后利息取出来合一起,再存入一年。赵阿姨选择哪种存法到期的收入多?

六年级数学下册教案2

  教学内容:

  成数(课本第9页例2)

  教学目标:

  1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。

  2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。

  教学重点:

  理解成数的意义。

  教学难点:

  解决解答有关成数的实际问题。

  教学过程:

  一、复习

  1、填空

  ①四折是十分之( ),改写成百分数是( )。

  ②六折是十分之( ),改写成百分数是( )。

  ③七五折是十分之( ),改写成百分数是( )。

  2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?

  二、创设情境,导入新课

  同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育

  三、探究体验

  (一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。

  1、让学生尝试把二成及三成五改写成百分数。

  2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的.知识。

  3、练习:将下列成数改写成百分数。

  二成=( )%; 四成五=( )%; 七成二=( )%。

  (二)教学例2

  1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

  2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?

  3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。

  4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。

  350(1-25%)=262.5(万千瓦时)

  或者引导学生列出

  350-35025%=262.5(万千瓦时)

  四、巩固练习

  1、三成=( )%; 五成六=( )%; 八成三=( )%;

  2、第9页做一做

  3、解决问题

  (1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?

  (2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)

  (3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?

  (4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?

  五、课堂总结

  这节课你收获了什么?

六年级数学下册教案3

  教学目标:

  1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。

  2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。

  3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。

  重点、难点:

  1.教学重点:理解、掌握杠杆平衡的规律。

  2.教学难点:让学生综合应用所学的知识和方法解决实际问题。

  教学准备:

  竹竿,棋子,塑料袋(多媒体课件)

  教学过程

  一、准备材料,导入活动:

  1.检查课前布置的制作工具(简单杠杆)的作业。

  学生对照制作要求,自查和同组互相检查。

  小黑板或媒体出示制作要求:

  (1)准备的竹竿长1m,尽量做到粗细均匀。

  (2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。

  (3)从中点处每隔8cm做一个刻度记号,尽量等距离。

  拿出准备好的棋子和塑料袋。检查大小是否一样。

  2.揭示课题:有趣的平衡(板书)

  二、动手实践,探索规律

  1.活动一:探索特殊条件下竹竿保持平衡的规律:

  (1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?

  ①学生思考,回答问题。“两边所放的棋子要同样多。”

  ②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。

  (2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?

  ①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”

  ②演示。如:

  左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。

  (3)小结:

  你有什么体会?

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  2.活动二:探索在一般条件下竹竿保持平衡的规律(A)

  (1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?

  ①也放4个棋子行不行?会产生什么结果?

  ②应该放几个?

  “放3个。”

  (2)如果左边的塑料袋在刻度6上放1个棋子。

  ①右边的塑料袋在刻度3上放几个呢?

  学生交流,各自说出自己的见解。

  ②右边的塑料袋在刻度2上呢?

  学生不难得出结果,放3个。

  ③右边的塑料袋在刻度1上呢?

  学生不难得出结果,放6个。

  (3)小结:

  师:你有什么体会?

  左右两边棋子个数与刻度数的积要相等。

  3.活动三:探索在一般条件下竹竿保持平衡的规律(B):

  (1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?

  (2)实验活动:

  ①学生动手进行实验活动。

  ②将实验结果记录下来。

  ③教师提供表格,引导学生展开活动。

  右刻度

  所放棋子数

  乘积

  (3)汇报结果。

  学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  (4)从表中你发现刻度数和所放棋子数成什么比例?

  学生观察表中两个量的变化情况,不难发现这两种量成反比例

  三、应用规律,体会揣摩

  1.基本练习:

  母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的'平衡?

  提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是x分米。可以得到方程

  60x=12×15

  解方程得x=3

  答:她坐的地方距支点3分米才能保持平衡。

  2.综合练习:

  桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?

  提示:(1)根据臂长和质量成反比例

  (2)先确定每个托盘中所放砝码的总质量,在确定臂长。

  四、回顾整理,反思提升

  1.谈收获。

  师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?

  2.评价。

  师:你对自己这节课的表现满意吗?

  可采取学生自评,互评,老师评价的方式进行。

  板书设计:

  有趣的平衡

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  作业设计

  基础:

  1.用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?

  综合:

  2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?

  提示:

  (1)可以像例题中一样,用列表的方法做。

  (2)根据臂长与质量成反比,列方程求解。

六年级数学下册教案4

  教学内容

  义务教育教科书人教版六年级数学下册第二章《百分数》第三课时完成练习二第6、7、8题。

  教学目标

  1、通过自己阅读,自主探究,了解纳税的意义。

  2、知道应纳税额与税率的意义。能根据具体税率,计算应纳税额。

  3、进行法制渗透,培养依法纳税的意识。

  教学重点:税率的理解和应纳税额的计算。

  教学难点:理解税收时的专有名词,理解税率的含义

  教法学法:教法:引导阅读、例题讲解、练习巩固。

  学 法:课前预习、独立思考、合作交流。

  教学准备:多媒体课件。

  教学过程:

  一、情境导入

  1、读一读

  (1)xx的研究、发射,国家财政投入10亿元。

  (2)教育部、财政部和国家统计局联合公布:20xx年国家财政性教育经费投资总额为31396.25亿元。

  (3)据了解,黄果树国家城市湿地公园总投资3.5亿元。

  2、这么多的钱从哪儿来?

  师:国家用收来的税款发展经济、科技、教育、文化和国防等事业。

  二、新授

  揭示课题:今天我们来学习百分数在生活中的特殊应用。板书:税率

  (一)税率的.意义

  1、请同学们打开书第10页,自行阅读。请你带着以下问题阅读,并在书中画出相关答语。

  (1)什么是纳税?

  (2)税收的种类

  (3)什么是应纳税额?

  (4)什么叫税率?(师:税率一般是由国家根据不用纳税种类定出不同的税率)

  (5)哪些人需要纳税?

  师注意板书:

  应纳税额:缴纳的税款叫做应纳税额。

  税率:

  2、法制教育:我国宪法第五十六条规定,“中华人民共和国公民有依照法律纳税的义务。”

  3、讨论:应纳税额与哪些条件有关?

  师:不同种类的税,征收标准不一样,也就是说不同税种的税率不同,所以应纳税额与税率有关;还与收入有关。

  4、怎样求应纳税额?

  板书:应纳税额=收入×税率

  (二)税率的有关计算

  (1)出示例3:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?

  (2)分析题目,理解题意。

  ①税率是多少?

  ②5%是什么意思?

  ③学生列出算式。

  师:求应纳税额,实际是求一个数的百分之几是多少。

  三、练习

  1、我是小小税法宣传员

  (1)税率是永远不变的。

  (2)各种收入与应纳税额的比率叫税率。

  (3)纳税只有我国才有,其他国家没有。

  (4)王叔叔说:“我付出劳动,得到工资,不需要纳税。

  2、解决问题

  (1)x华买了一辆5200元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。他买这辆摩托车一共要花多少元?

  (2)20xx年十月黄金周第一天黄果树景区接待游客10.74万人次,综合收入6100万元;如果综合收入的3%交纳营业税计算,这一天应缴纳营业税多少万元?

  四、总结

  今天你有什么收获?

  师:今天我们学习了税收的有关知识,希望同学们长大后,做一个诚信纳税的公民。

  五、课外延伸

  1、课后完成练习二第6、7、8题

  2、请有条件的同学们课后去税务局调查一下不同税种的税率。

六年级数学下册教案5

  教学目标

  1、知识与技能目标:

  (1)学生能正确判断应用题中涉及的量成什么比例关系,能正确利用正反比例的意义正确解答实际问题。

  (2)让学生掌握用比例知识解决问题的解题步骤和方法。

  (3)进一步提高学生运用已学知识进行分析、判断和推理的能力。

  2、过程与方法目标:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  3、情感态度和价值观目标:

  感受数学知识与实际生活的密切联系,发展学生探究解决问题策略的能力,体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  教学工具

  ppt课件

  教学过程

  一、复习旧知,导入新课。

  1、师:同学们,前几节课我们刚刚学习了正反比例的意义,首先我们通过一组练习来复习一下。

  2、课件出示习题。

  指名学生回答,并说明理由。

  3、揭题。

  师:这节课,我们就来学习用正反比例的知识解决问题。

  二、探究体验,获取新知。

  (一)、教学例5.

  师:我们先看看李奶奶遇到了什么问题?(课件出示例5)

  1、收集信息,理解题意。

  师:从图中你获得了哪些数学信息?

  (指名学生汇报)

  2、组织学生用学过的方法自主解决问题。

  师:你能用以前学过的方法解答吗?试一试。

  ①学生尝试用自己喜欢的方法解答,教师巡视了解情况。

  ②指名学生汇报解题方法,并让学生说一说是怎样想的。

  生可能的答案有:28÷8×10=35(元) 10÷8×28=35(元)

  ③教师指出也可用比例的知识解答。

  3、用比例知识解决问题。

  (1)学生独立思考和讨论问题。

  师:这道题还可以用比例的知识来解答,怎样用比例的知识解答呢?请同学们先思考和讨论以下问题。(课件出示)

  要求:先独立思考后,再小组内交流讨论。

  ①题中有哪两种相关联的量?

  ②哪个量是一定的?

  ③它们成什么比例关系?你是依据什么判断的?

  ④根据这个比例关系,你能列出等式吗?

  (2)学生交流讨论后,指名学生汇报,并引导学生概括出等量关系式。

  (3)学生尝试用正比例知识解决问题。

  师:你能完整的把这道题用比例知识解答吗?

  学生尝试用比例知识解答,教师巡视了解情况,知道个别有困难的学生。

  (4)指名学生板演过程,集体交流订正。教师提醒学生要检验。

  (5)师:你认为在解题过程中有什么需要注意的地方要提醒给大家呢?(指名学生回答)

  4.小结。

  思考以下问题:

  用比例知识解决这个问题的关键是什么?

  找到不变的量,只要两个量的比值一定,就可以用正比例关系解答。

  5.习题巩固

  我会分析:(课件出示)

  学生独立审题并解答。集体订正。

  (二)教学例6.

  1.课件出示例6.

  师:你能根据刚才总结的经验试着解决下面的.问题吗?

  2.课件出示自学提示:

  (1)题中有哪两种相关联的量?

  (2)哪个量是一定的?

  (3)它们成什么比例关系?

  (4)根据比例关系列出方程并解答。

  学生思考后独立解答,教师巡视了解情况,并指名板演。

  3.集体评讲。

  4小结。

  思考:

  1.你认为用比例解决问题的关键是什么?

  指名学生回答他生补充,课件出示总结。

  2.用正反比例解决问题的步骤有哪些?

  (1)学生先独立思考后,小组交流,指名汇报。

  (2)师生总结。(课件展示)

  ①找(找相关联的量)

  ②判(相关联的量成什么比例)

  ③列(列出方程)

  ④解(解方程)

  ⑤验(检验计算结果)

  三、习题巩固。

  基础练习:只列式不计算。

  1.运动会上,六年级同学进行大型体操表演,每行站20人,可以站18行;若每行站40人,可以站χ行?

  2.小兰身高1.5米,她的影长是2.4米,如果同一时间、同一地点测得一棵树的影长为4米,这棵树高χ米。

  3.小华读一本书,每天读10页,30天可以读完;如果每天多读5页,χ天可以读完。

  (学生先独立解答后,指名回答,并讲解列式的依据。)

  拓展练习:

  修一条路,计划每天修90米,40天完成,实际5天修了300米,照这样计算,多少天可以完成任务?

  (学生先独立解答,师巡视指导,找不同做法的同学回答,他生订正)

  四、作业

  教材63页练习十一4、5、7、8题。

  五、课堂小结。

  通过本节课的学习,你有哪些收获?

  指名学生说一说本节课的收获,他生补充。

  板书

  用比例解决问题

  例5 解:设李奶奶家上个月的水 例6 解:设原来5天的用电量

  费是x元。 现在可以用x天。

  28:8=x:10 25x=100×5

  8x=28×10 x=100×5÷25

  X=35 x=20

  答:李奶奶家上个月水费 答:原来5天的用电量现在

  是35元。 可以用20天。

六年级数学下册教案6

  设计说明

  1.注重培养学生学习的自主性。

  引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。

  2.培养学生的解题能力。

  本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。

  课前准备

  多媒体课件

  教学过程

  ⊙创设情境,提出问题

  1.介绍“物物交换”的背景知识。

  人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。

  2.呈现问题。

  同学们算一算,14个玩具汽车可以换多少本小人书?

  设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。

  ⊙尝试解决,体会联系

  1.想一想。

  师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。

  2.说一说。

  教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的`数量之间存在的关系。

  预设

  方法一 14÷4=3.5,3.5×10=35(本)。

  方法二 10÷2=5,14÷2=7,5×7=35(本)。

  方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。

  方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。

  ⊙自主学习,探究新知

  1.提出新的要求。

  师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?

  2.学生尝试列式。

  预设

  方法一 4∶10=14∶x。

  方法二 10∶4=x∶14。

  方法三 14∶4=x∶10。

  方法四 4∶14=10∶x。

  3.交流汇报写出比例的主要依据。

  4.学生独立解比例。

  5.汇报结果。

  预设

  生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。

  生2:我是这样计算的:

  4∶10=14∶x

  解:4x=140

  x=35

  6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。

  (师巡视,适时指导)

  7.验算:把求出的结果代入比例验算一下,看等式是否成立。

  (学生自主验算)

  8.教师小结。

  解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。

  设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。

六年级数学下册教案7

  【教学目标】

  1、能正确理解“打折”的含义,理解原价、现价和折扣之间的关系,能解决生活中和折扣有关的问题。

  2、在解决实际问题的过程中,培养学生观察、分析、推理、概括的能力,同时使学生学会灵活合理地选择方法。

  3、通过解决实际问题,使学生体会数学与实际生活的联系,同时通过对同一商品不同促销手段的对比分析,培养学生全面思考、理性消费的好品质。

  学情分析:对于乡村学生,少部分学生接触了解“打折”,他们这种对打折的认识还是比较被动的生活经验,并未真正理解折扣的知识,也没有建立起商业和数学、教材上的.百分数之间的联系。

  【教学重点】

  理解折扣的含义,并运用百分数的知识解决有关折扣的实际问题。

  【教学难点】

  应用折扣的含义,全面考虑问题,合理消费,并解决生活中的实际问题。

  【教学过程】

  一、创设情境,激发兴趣

  师:我想咱们班一定有同学去过大商场,细心的你们有没有发现在周末或过节,商场有一些促销活动呢?比如说“打折”。折扣是商业活动中的一个专用名词,也是本节课的一个数学知识,今天这节课,我们一起从数学的角度深入研究折扣。(板书:折扣)

  二、探索新知

  1、提出问题,认识“打折”。

  (1)师;关于打折,你们想知道些什么?(预设:什么叫打折?打几折是什么意思?什么情况下打折?)在课本第8页的第一段话中,有关于打折的解释,我们一起来看看吧!齐读第一段话。默读,请同学们用笔划出相关的内容。

  师:你从第一段话中知道了什么?

  (预设:(1)降价出售商品,叫做打折扣销售,俗称打折。(2)几折表示十分之几,也就是百分之几十。(3)打9折出售,就是按原价的90%出售。)

  (2)教师出示实例。引导学生总结出“折扣”的含义

  三折=(3/10)=(30)%五折=(5/10)=(50%)七五折=(75%)

  6/10=(六)折95%=(九五)折80%=(八)折

  (3)师生小结:几折就表示十分之几,也就是百分之几十。

  2、联系问题,认识按折扣出售

  (1)师:第一段话中,按九折出售,是什么意思?(预设:按原价的90%出售。)

  师:假如一件商品原价是100元,那么现价是多少呢?你能自己列式吗?

  说说你列式的依据是什么?(预设,大多数学生基本上都能列式。,100×90%=90(元),让学生说列式依据,就是根据提示,原价×90%=现价。)

  (2)师:如果我是一名售货员,几件商品都是原价100元,第一件商品打5折出售,你能知道假如一件商品原价还是100元,如果按5折出售,现价是多少?如果按七五折出售,现价是多少?说说你列式依据是什么?(预设,打5折,就是原价×50%是现价,打七五折,就是原价×75%=现价。同行学们,我们能不能通过刚才的举例总结一个数量关系式:原价×折扣=现价)

  3、求折扣数、求原价的折扣问题

  (1)师:小雨和爸爸在商场买东西,遇到一些问题,我们一起来帮助他们吧!我们一起看看第八页例一。请同学们齐读问题2遍。请同学们拿出笔,划出有效信息。说说你知道了哪些信息?(预设:自行车原价180元,现在按八五折出售,求现价。一个随身听,原价160元,现在只花了九折的钱,求比原价便宜了多少?)

  师:请同学们先独立完成,小组内再交流反馈。

  (2)例1(1)预设学生列式:180×85%=153(元)180×0.85=153元

  师:说说你的列式依据是什么?(预设:原价*折扣=现价)

  例1(2)预设学生列式:160-160×90%=16元160×(1-90%)=16元

  师:说说你的列式思路是什么?(预设:原价-现价=便宜的价格九折就是按原价的90%出售,单位“1”是原价,便宜了原价的(1-90%))

  (设计意图:使学生明白什么量就要找到与之对应的分率。让学生在对比中加深对折扣问题数量关系的理解。)

  (3)一本图书打八折后,便宜了9.6元,这本书原价多少钱?

  师:知道便宜的钱数,求原价,是例题1(2)的逆运算

  学生列式:9.6÷(1-80%)=48(元)

  答:这本书原价48元。

  (设计意图:使学生明白求原价(单位“1”)用除法)

  三、练习巩固

  今天,大家表现真棒啊,我们一起利用折扣的知识,来商场看看这些商品的现价是多少吧!

  完成第八页做一做,一定要记得列算式。交流反馈:说说你列式的依据是什么?(预设:这是一道基础题,考查的是对折扣知识的理解。原价*折扣=现价)

  小结:我们在购买东西也就是说我们买东西时不能只看原价或者折扣,因为价格会受到原价和折扣的影响。

  四、课堂总结。

  师:通过本节课,你有什么收获吗?

  (预设:了解了折扣的知识。知道了一个新的数量关系式:原价*折扣=现价,在购物时,一定要认真要分析原价和折扣是多少,现价是多少,购物一定要货比三家,选择性价比最高最实惠的商品,争当理财小能手。)

六年级数学下册教案8

  一、创设情境,再现知识

  谈话:同学们,上节课我们一起回顾了用字母表示数,体会了用字母表示数的优点。这节课老师又给同学们带来了一位老朋友,请看他是谁?(师板书X)看到老朋友,你想到了关于它的哪些知识?

  学生可能回答以下几个方面(方程、解方程、方程的解、列方程解应用题、等式、等式性质等知识)(师板书相关概念)

  这节课让我们和老朋友“x”一起回顾方程的有关知识,好吗?

  【设计意图】引导学生由字母x回忆起方程的有关知识点,更容易引起学生对已学知识的回顾整理。把知识拟人化更符合学生的心理特点,能充分调动学生参与学习探究的兴趣和欲望。

  二、梳理归网,学习内化

  1.回顾知识,自主梳理

  ①自己回顾每个概念的意义,同位交流。

  ②等式与方程有什么关系?方程的解与解方程又有什么不同?你能举例说明或画图表示吗?(小组合作,整理在练习本上)

  【设计意图】让学生通过自我回顾,忆起方程中各个概念的意义和联系,在举例中进一步区分等式与方程、方程的解与解方程等易混概念。

  2.交流展示,引导建构

  ①全班交流整理结果(展台展示,师及时点拨纠正存在问题)

  ②哪些是方程?哪些是等式?

  6x+8=11 8x-5x=15×0.2 30a+5b 7x-6<36 55x= (2.4+a)÷2.4=5 0.5×□+72÷18=8 1÷8=0.125 2.5X-7=13

  ③你会解这些方程吗?解方程的根据是什么?(等式性质)

  选择几个解一解。(展台展示交流)

  如何判断方程解的是否正确?在解方程时要注意一些什么?

  ④复习简易方程的解法、步骤及检验方法、书写格式。

  【设计意图】在交流中使学生明确:判断一个式子是不是方程,要把握两点,第一含有未知数,第二必须是等式。方程的解是未知数的数值,解方程是求这个数值的过程。

  3.提炼方法,认知内化

  (1)列方程解应用题可以帮助我们很容易的解决许多实际问题,怎样列方程解答应用题?关键是什么?(找等量关系,设未知数,列方程)

  (2)出示第101页第4题及改编题

  20xx年山东省应届大学生本科毕业生报考研究生的人数达到62300人,比20xx年增加了40%。20xx年应届大学生本科毕业生报考研究生的有多少人?

  ①你会用不同的方法解答吗?(学生板演,集体订正)哪种方法更适合这道题?为什么?

  ②如果已知20xx年的人数,求20xx年的人数,用哪种方法合适呢?

  引领反思:用方程解决问题与用算术法解决问题相比,有什么特点?相同之处是什么?(用方程解决问题能使较复杂的'思考过程变得简单)

  【设计意图】结合具体的题目,让学生分别用方程与算术法解答,通过对比分析两种解答方法的基本思路及特点,体会两种思路的区别,能选择合适的方法解答。

  三、综合应用,整体提高

  1.判断下面各题,哪些适合用算术方法解,哪些适合列方程解,为什么

  ①一个三角形的面积是45平方厘米,底是12厘米,高多少厘米?

  ②在学校组织的数学竞赛中,六年级得一等奖的有56人,得二等奖的人数比一等奖的人数的2倍还多8人,得二等奖的有多少人?(如果知道二等奖的人数,求一等奖的人数用哪种方法合适?)

  2.我是“精选细算“小英才

  课本101页5—8题(学生独立做,集体订正)

  3.智力冲浪

  课本101页9—11题(这是含有两个未知量的题目,教师重点引导学生用一个未知数表示两个未知量。)

  【设计意图】练习时,让学生思考用方程还是算术法解答,通过对比分析选择合适的方法解答,感受方程解题的优越性。

  四、总结提升,知情共融。

  这节课我们整理和复习方程的有关知识,谁来说一说有哪些收获?

六年级数学下册教案9

  教学内容:

  人教版六年级下册“整理和复习”第118——119页.

  教学目标

  1、知识目标:

  (1)了解邮票的作用。了解确定邮资的2个因素。

  (2)理解、掌握确定邮政资费的方法,会根据条件选择合理的方案。

  2、能力目标:

  (1)通过数学学习活动,学会运用数学的思维方式去解决日常生活中的一些问题。

  (2)培养学生的组合意识,培养学生的探究能力,推理能力。

  (3)增强应用数学的意识,发展学生的实践能力和创新精神。

  3、过程与方法:

  学生通过自学资费标准,明确要解决的问题。通过自主探究和讨论交流,找出解决问题的方法,并验证方法的合理性。

  4、情感目标:

  培养学生的审美意识,感受数学在生活中的'价值。

  教学重、难点

  重点:掌握不同信件的资费办法,理解确定邮资的2大因素。

  难点:理解不同信件的资费的标准,探究合理的邮资支付方式。

  教具准备

  布置学生调查一些关于邮票和邮政资源的信息,收集一些邮票。

  教学过程

  一、创设情景,生成问题

  今天老师这里有个谜语要考考大家咯,准备好了吗?

  (课件)“猜谜”:薄薄一张纸,四边细牙齿,两地朋友要谈心,必须请他当差使。

  师:过去是“一封家书抵万金”,居住在两地的人们通过寄信来传递信息。现在通讯发达了,寄信的人少了,但是人们还是喜欢邮票,那是因为邮票既有收藏的价值又设计得很精美。今天,杨老师就给你们一个机会来欣赏一下中国收藏价值最高的邮票——“全国山河一片红”。(简叙其历史背景)

  大家知道,寄信的时候用的邮票的面值和数量都不太一样,请大家欣赏屏幕上的邮票,谈谈各自的发现;其实邮票中也隐含着不少数学知识,今天我们就来研究邮票中的数学问题。

  板书课题:邮票中的数学问题。

  (设计意图:通过猜谜语激发学生的学习兴趣,介绍中国收藏价值最高的邮票—————全国山河一片红,使学生了解中国历史,增强他们的爱国主义情感。)

  二、探索交流,解决问题

  师:我这里有两封信,一封贴的邮票是0·80元,另一封贴的是1·20元,邮资是不同的,谁愿意猜一猜,邮资的多少应该是由哪些因素决定的?

  生1:与信的质量大小与邮寄的路程远近有关。

  生2:信封越重,花的钱越多,路程越远,邮资也越高。

  师:很好,大家的意见很有道理,请同学们翻开书,阅读第118页中间的表格,看看邮资与信函的质量、投寄的地址有着什么样的关系。

六年级数学下册教案10

  教学目的:

  1、培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。

  2、培养学生认真审题的良好学习习惯。

  教学重点:

  灵活运用周长或面积公式解决实际问题。

  教学过程:

  一、周长与面积的区别。

  1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?

  2、计算下题。求出它的周长与面积。

  (1)学生动手计算。

  (2)周长与面积有什么不同?

  概念不同,计算公式不同,单位不同。

  3、判断。两个图形相比较,哪个图形的周长长,哪个图形的面积就大。

  (错。周长的长短和面积的大小没有必然的联系。)

  二、运用所学知识解决实际问题。

  1、一个圆形花坛,直径是4米,周长是多少米?

  =(米)

  2、一个圆形花坛,周长是米,直径是多少米?

  =4(米)

  3、一个圆形花坛的半径是2米,它的面积是多少平方米?

  =(平方米)

  4、一个圆形花坛的周长是米,它的面积是多少平方米?

  r=()=2(米)=(平方米)

  5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

  6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)

  7、一个圆形餐桌面直径是2m,它的周长多少米?它的面积是多少米?如果一个人需要宽的位置就餐,这张餐桌大约能坐多少人?+

  三、综合练习。

  1、判断对错,(1)圆的半径都相等。()

  (2)在同圆或等圆中圆周长约是半径的倍。()

  (3)半圆的`周长是圆周长的一半。()

  2、只列式不计算。

  (1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?

  (2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?

  (3)一个圆形铁板的周长是分米,它的面积是多少平方分米?

  3、说一说下面各题的解题思路。

  (1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?

  (2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是多少平方米?

  四、布置作业

  练习十七1-3,思考第4题。

六年级数学下册教案11

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话揭题

  1.谈话。

  (1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?

  预设

  生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。

  生2:三角形的面积计算公式是“底×高÷2”。

  ……

  (2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?

  预设

  生1:我们学过长方体、正方体、圆柱、圆锥。

  生2:长方体的表面积……

  2.揭题。

  我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。

  ⊙回顾与整理

  1.提问:如何求组合图形、不规则图形的周长或面积?

  (一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)

  2.提问:如何计算立体组合图形的表面积或体积?

  (1)学生分组讨论。

  (2)指名汇报。(学生自由回答,合理即可)

  (3)教师小结。

  在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。

  在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。

  无论是分割还是添补,都是把复杂的图形转化成简单的图形。

  ⊙典型例题解析

  1.课件出示典型例题1。

  (1)求阴影部分的面积。(单位:cm)

  分析 本题考查学生求组合图形面积的能力。

  因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。

  解答 20×16-12×20÷2-8×16÷2=136(cm2)

  (2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)

  分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。

  观察图形可以看出:阴影部分的面积加上三角形EFC的`面积等于大三角形DEG的面积,而梯形ABEF的面积加上三角形EFC的面积等于大三角形ABC的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形ABEF的面积相等,只要求出梯形ABEF的面积就可以求出阴影部分的面积。

  解答 (8-3+8)×6÷2=39(cm2)

  2.课件出示典型例题2。

  将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体,求这个物体的表面积。

  分析 本题考查的是求立体组合图形表面积的能力。

  如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。

  物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积

  解答 2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1

  =157+31.4+18.84+6.28

  =213.52(m2)

六年级数学下册教案12

  教学目标:

  1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

  2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

  3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

  课前准备:教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物。

  教学设计:

  一、 情景导入

  1、 我们生活在一个多姿多彩的大千世界,在我们的身边随处可见各种各样不同形状的物品,你们看——(课件出示),你能说出哪些物体的的形状是圆柱?(指名说)在我们的生活中,你还见过哪些形状是圆柱的物体?(指名说)

  二、 探究体验

  1、 认识圆柱

  请同学们拿出课前准备的圆柱形状的物体,仔细观察,并用手摸一摸它的表面,你发现了什么?

  (1) 学生观察,并用手摸表面。

  (2) 集体交流。(指名说)(教师随机介绍并板书:圆柱的上、下两个面叫做底面,它们是完全相同的两个圆。圆柱还有一个曲面,叫做侧面。

  (3) 通过刚才的仔细观察,动手实践,同学们都有所发现,下面我们一起来整理一下。(课件出示)这就是圆柱的特点,我们一起来读一下,注意我有一个要求,就是要把关键词重读出来,能做到吗?(齐读一遍)

  (4) 师介绍:圆柱两底之间的距离叫做高。大家想一想:圆柱有多少条高?(无数条)

  2、 圆柱的侧面积。

  (1)(出示)师:这是一个(圆柱)形状的茶叶桶,谁能给大家指出这个圆柱各部分的名称?(指名到前面来指)

  (2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)

  (3)那大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)

  师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,得到了一个(长方形),也就是说圆柱的侧面展开后是一个(长方形)

  (4)下面请同学们认真观察,想一想:

  ①我们得到的这张长方形纸的长和宽分别与这个圆柱形茶叶桶有什么关系?

  ②长方形的面积与茶叶桶的侧面积有什么关系?(课件出示)

  同桌互相讨论一下。

  集体交流。(指名说,教师随即板书)

  长方形的面积 长 宽

  圆柱的侧面积 底面周长 高

  (5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高

  这就是我们一起推导出来的圆柱的侧面积公式,一起读两遍,记住它。

  那大家想一想,要想计算圆柱的侧面积必须得知道哪两个条件?(圆柱的底面周长和高)

  三、 实践应用

  刚才通过我们打家共同的努力一起推导出了计算圆柱侧面积的公式,下面我们就应用这个公式,走进生活,去解决生活中的`问题。

  1、这个茶叶桶,课前我测量出它的底面周长是()厘米,高是()厘米,大家能不能求出它的侧面积?

  2、某罐头厂要给生产的罐头瓶贴上商标包装纸(接头处不计),已知这种罐头瓶高10厘米,底面直径为12厘米(如图所示),贴一个这样的罐头瓶商标要用多少包装纸?

  3、请同学们拿出你课前准备的圆柱形的物体,同桌合作:先动手测量出要求它的侧面积所需要的数据,然后在练习本上计算它的侧面积。

  四、课堂小结。

  通过这节课的学习,你都有什么收获?(指名说)

  五、拓展延伸

  1、在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。

  2、课后练一练1、3题做在练习本上。

六年级数学下册教案13

  教学目标

  1.联系同学们的生活实际,通过观察、操作,了解点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体,认识圆柱和圆锥,掌握圆柱和圆柱的基本特征,激发同学们的探究欲望。

  2.通过观察、思考、操作、讨论等活动,培养同学们自主学习、合作探究的良好品质。

  教学重、难点

  理解并掌握圆柱、圆锥的基本特征。

  教学过程

  一、情境导入

  1.教师拿一根一头拴着一个小球的绳子甩动,问:你们看到了什么? 再让学生结合书第2页2、3题,想一想你发现了什么?

  最后总结出点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体的结论。

  2.教师出示一个袋子,里面装着各种物体(长方体、正方体、球、圆柱、圆锥、圆台)

  游戏规则:一人上台摸,并描述你摸到的这个物体的最典型的特征,使下面同学能在最短的时间内猜出你摸的这个物体的名称。

  师生共同活动。在摸出物体后,教师让学生回忆一下以前学过的长方体、正方体的特征。

  引出这节课要探究圆柱和圆锥。板书课题:圆柱和圆锥

  二、 探究圆柱和圆锥的特征

  1.从生活的实景图中发现圆柱和圆锥。

  从书第2页找一找的实景图,找出我们学过的立体图形,与同伴互相指一指,哪些是圆柱和圆锥,并指名回答。

  2.小组合作学习,探究圆柱、圆锥的`特征。

  用各种方法,如摸、量、画等,观察带来的圆柱、圆锥形实物,你们有哪些发现?用手中的工具验证你们的猜想。并填写小组合作学习的报告。

  小组合作学习表格:

  研究对象

  你们猜想它有哪些特征?

  你们是用怎样的方法验证你们的猜想的?把验证方法记录下来,与同学交流。

  3.小组汇报反馈。

  教师抓住几个关键点进行引导:

  圆柱的特征:

  ⑴两个底面、一个侧面。底面是由两个大小完全相等的圆组成。侧面是一个弯曲的面。

  ⑵认识圆柱的高,并会测量圆柱的高。如果没有学生探究这个问题,教师要示范两个底面大小差不多的圆柱,让学生观察它们的高不同,从而引导学生关注圆柱的高(圆柱两个底面的距离叫做高)。圆柱有无数条高,每条高的长度相等。

  圆锥的特征:

  ⑴由一个底面(圆)、一个侧面(曲面)组成。

  ⑵从圆锥的顶点到底面圆心的距离是圆锥的高。引导学生掌握测量圆锥的高的方法。

  小结:通过刚才的合作学习和交流,我们更进一步认识了圆柱和圆锥的特征。你能说一说你现在知道了圆柱和圆锥有哪些特征吗?

  4.说一说

  课本3页,让学生再次系统地看一看圆柱和圆锥各部分的名称。拿一个你准备好的圆柱和圆锥,同桌互相说一说它们各部分的名称。

  说一说,在生活中见到的哪些物体的形状像圆柱、圆锥?指名回答。

六年级数学下册教案14

  一、教学目标

  1、能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

  2、会在方格纸上用“数对”确定物体的位置。

  3、发展空间观念,初步体会到数形结合的思想。

  4、体会生活中处处有数学,提高运用知识解决实际问题的能力。

  二、教学重点

  使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

  三、教学难点

  在方格纸上用“数对”确定位置。

  1、教法

  情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。

  2、学法

  积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。

  四、教学准备

  1、多媒体课件

  五、教学过程

(一)谈话导入

  1、师生谈话。

  1)学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?

  2)这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?

  3)这位同学的座位是在第3排,大家知道这位同学是谁吗?

  2、导入新课。

  今天这节课,我们就一起来学习确定位置的方法。

  1)板书课题:用数对确定位置

  2)设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。

  二、探索新知

  1、教学例1。

  (1)出示例题1教学图。

  让学生观察图,说说张亮同学坐在第几列?第几行。

  (竖排叫做列,横排叫做行)

  (2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。

  (3)让学生用数对表示王艳和赵强的位置。

  王艳(3,4)赵强(4,3)

  (4)小结。

  确定一个同学在教室的`位置,要考虑两个要素:第几列和第几行。

  设计意图:通过具体的实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的过程

  2、完成第3页的“做一做”。

  课件出示电影院和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。

  (电影院用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。

  设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。

  3、教学例2。

  (1)认识方格图。

  出示动物园示意图。

  指导学生观察图。

  这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。

  (2)用数对表示图中各场馆的位置。

  提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?

  大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示

  你们能用数对表示其他场馆所在的位置吗?

  熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)

  (3)根据数对标位置

  在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。

  设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。

  三、巩固运用

  1、小游戏:看谁反应最快。

  老师说出一组数对,相应的同学要在3秒内起立。

  2、做一做。(课件出示)

  设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。

  四、课堂总结

  这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。

  五、板书设计

  1、用数对确定位置

  2、竖排叫做列从左往右

  3、横排叫做行从前到后

  4、张亮坐在第2列第3行(2,3)

六年级数学下册教案15

  【教学目标】

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

  【教学重点】

  圆锥体体积计算公式的推导过程.

  【教学难点】

  正确理解圆锥体积计算公式.

  【教学步骤】

  一、铺垫孕伏

  1、提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的`计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

  5、推导圆锥的体积公式:

  圆锥的体积是和它等底等高圆柱体积的1/3

  V=1/3Sh

  6、思考:要求圆锥的体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是()

  圆锥的底面积是10,高是9,体积是()

  (二)教学例1

  1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

  学生独立计算,集体订正.

  2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

  3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

  (1)已知圆锥的底面半径和高,求体积.

  (2)已知圆锥的底面直径和高,求体积.

  (3)已知圆锥的底面周长和高,求体积.

  4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

  四、随堂练习

  1、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  【板书设计】

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

《六年级数学下册教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【六年级数学下册教案】相关文章:

人教版六年级数学下册第一单元《负数》教案07-03

北师大版小学数学下册教案11-05

语文六年级下册教案01-09

六年级下册科学教案08-20

六年级下册数学教学计划05-21

小学数学六年级下册教学计划04-10

小学数学六年级下册教学计划07-17

六年级下册数学教学计划08-30

六年级数学下册教学计划04-02

六年级数学下册教案

  作为一名为他人授业解惑的教育工作者,通常会被要求编写教案,教案是备课向课堂教学转化的关节点。写教案需要注意哪些格式呢?以下是小编帮大家整理的六年级数学下册教案,欢迎阅读与收藏。

六年级数学下册教案

六年级数学下册教案1

  【学习目标】

  1.了解利率调整的原因;知道如何是收益最大;了解千分数、万分数的概念。

  2.让学生获得运用数学知识解决实际问题的能力。

  【学习重难点】

  正确地计算利息,解决利息计算的实际问题。

  【学习过程】

  一、知识铺垫。

  1.什么叫利率、本金、利息。

  2.利息的计算方法是什么?

  二、自主探究。

  李阿姨准备给儿子存2万元,供他六年后上大学,银行给李阿姨提供了三种理财方式:普通储蓄存款、教育储蓄存款和购买国债。

  根据题意,李阿姨有几种选择?分别是什么?

  三、课堂达标。

  1.李伯伯想把2000元存入银行,有两种选择。第一种是买两年国债,年利率为4.5%;另一种是买银行一年期理财产品,年利率为4.3%,那种方案收益更大?

  2.商场有两种品牌的衣服,售价均为240元。甲品牌衣服“折上折”,就是先打六折,在此基础上再打九折;乙品牌衣服满200元减100元。哪种品牌的衣服更便宜?

  3.某旅游团共有成人12人,学生7人,他们去到一个景点观光,以下是导游了解到的门票报价:

  A.成人票每张30元;

  B.学生票半价。

  C.满20人可以购团体票,打七折。

  如果你是其中的'一员,你会制定什么方案?

  4.某食品公司去年第四季度营业额按照5%纳税,税后余额为57万元。该公司第四季度纳税多少万元?

  5.华联超市迎“五一”进行促销,百事可乐“买10赠3”;文峰超市也进行促销,百事可乐打七折销售。已知两家超市的百事可乐原价都为4元一瓶。六二班要买40瓶可乐在哪家超市买比价合算?

  6.小林家去年种植水稻收成为1500kg,今年预计比去年增产一成。今年水稻总产量预计是多少千克?

  四、拓展练习。

  赵阿姨有1000元钱,打算存入银行两年。有两种储蓄办法:一种是存两年期的年利率为3.75%,一种是先存一年期的,年利率为3.25%,第一年到期再把本金和税后利息取出来合一起,再存入一年。赵阿姨选择哪种存法到期的收入多?

六年级数学下册教案2

  教学内容:

  成数(课本第9页例2)

  教学目标:

  1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。

  2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。

  教学重点:

  理解成数的意义。

  教学难点:

  解决解答有关成数的实际问题。

  教学过程:

  一、复习

  1、填空

  ①四折是十分之( ),改写成百分数是( )。

  ②六折是十分之( ),改写成百分数是( )。

  ③七五折是十分之( ),改写成百分数是( )。

  2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?

  二、创设情境,导入新课

  同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育

  三、探究体验

  (一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。

  1、让学生尝试把二成及三成五改写成百分数。

  2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的.知识。

  3、练习:将下列成数改写成百分数。

  二成=( )%; 四成五=( )%; 七成二=( )%。

  (二)教学例2

  1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

  2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?

  3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。

  4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。

  350(1-25%)=262.5(万千瓦时)

  或者引导学生列出

  350-35025%=262.5(万千瓦时)

  四、巩固练习

  1、三成=( )%; 五成六=( )%; 八成三=( )%;

  2、第9页做一做

  3、解决问题

  (1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?

  (2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)

  (3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?

  (4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?

  五、课堂总结

  这节课你收获了什么?

六年级数学下册教案3

  教学目标:

  1.学生初步理解杠杆平衡的原理,并通过实验探究,培养学生动手操作实践,与人合作协调,及迁移、类推能力和抽象概括能力。

  2.经过启发、讨论和独立思考、学生主动参与、积极探究,获得了杠杆平衡的条件,学生认识水平、实践能力和创新意识从中得到了培养。

  3.学生在实验、实际操作中体验学习的乐趣,并通过实际应用的练习,将课内外的知识有机结合,培养学生学以致用的应用意识和创新意识。

  重点、难点:

  1.教学重点:理解、掌握杠杆平衡的规律。

  2.教学难点:让学生综合应用所学的知识和方法解决实际问题。

  教学准备:

  竹竿,棋子,塑料袋(多媒体课件)

  教学过程

  一、准备材料,导入活动:

  1.检查课前布置的制作工具(简单杠杆)的作业。

  学生对照制作要求,自查和同组互相检查。

  小黑板或媒体出示制作要求:

  (1)准备的竹竿长1m,尽量做到粗细均匀。

  (2)在竹竿中点打孔,拴绳子时注意绳子的长度,同时注意检查拎起绳子后竹竿是否平衡。

  (3)从中点处每隔8cm做一个刻度记号,尽量等距离。

  拿出准备好的棋子和塑料袋。检查大小是否一样。

  2.揭示课题:有趣的平衡(板书)

  二、动手实践,探索规律

  1.活动一:探索特殊条件下竹竿保持平衡的规律:

  (1)如果塑料袋挂在竹竿左右两边刻度相同的地方,怎样放棋子才能保证平衡?

  ①学生思考,回答问题。“两边所放的棋子要同样多。”

  ②演示:如:左边放3个棋子,右边也必须放3个棋子,这样才能保证平衡。

  (2)如果左右两边塑料袋放入同样多的棋子,它们移动到什么样的位置才能保证平衡?

  ①学生思考,说出自己的见解。“塑料袋挂在竹竿左右两边的刻度要相同。”

  ②演示。如:

  左边塑料袋挂在刻度“4”的点上,右边塑料袋也要挂在刻度“4”的点上,这样才能保证平衡。

  (3)小结:

  你有什么体会?

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  2.活动二:探索在一般条件下竹竿保持平衡的规律(A)

  (1)左边的塑料袋在刻度3上,放4个棋子,右边的塑料袋在刻度4上,放几个才能保证平衡?

  ①也放4个棋子行不行?会产生什么结果?

  ②应该放几个?

  “放3个。”

  (2)如果左边的塑料袋在刻度6上放1个棋子。

  ①右边的塑料袋在刻度3上放几个呢?

  学生交流,各自说出自己的见解。

  ②右边的塑料袋在刻度2上呢?

  学生不难得出结果,放3个。

  ③右边的塑料袋在刻度1上呢?

  学生不难得出结果,放6个。

  (3)小结:

  师:你有什么体会?

  左右两边棋子个数与刻度数的积要相等。

  3.活动三:探索在一般条件下竹竿保持平衡的规律(B):

  (1)问题:左边在刻度4上放3个棋子并保持不变,右边分别在各个刻度上放几个棋子才能保证平衡呢?

  (2)实验活动:

  ①学生动手进行实验活动。

  ②将实验结果记录下来。

  ③教师提供表格,引导学生展开活动。

  右刻度

  所放棋子数

  乘积

  (3)汇报结果。

  学生发现:左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  (4)从表中你发现刻度数和所放棋子数成什么比例?

  学生观察表中两个量的变化情况,不难发现这两种量成反比例

  三、应用规律,体会揣摩

  1.基本练习:

  母女俩在玩跷跷板,女儿体重12千克,坐的地方距支点15分米,母亲体重60千克,她坐的地方距支点多远才能保持跷跷板的'平衡?

  提示:从新课探究的过程我们可以知道,体重和坐的地方距支点的长度成反比例。因此,可直接设她坐的的地方距支点的距离是x分米。可以得到方程

  60x=12×15

  解方程得x=3

  答:她坐的地方距支点3分米才能保持平衡。

  2.综合练习:

  桌子上有一个天平,天平左右两边各有一个可以滑动的托盘,天平的臂上各有几个相等的刻度。现在要把1克,2克,3克,4克,5克五个砝码放在天平上,且使天平左右两边保持平衡,该怎样放?

  提示:(1)根据臂长和质量成反比例

  (2)先确定每个托盘中所放砝码的总质量,在确定臂长。

  四、回顾整理,反思提升

  1.谈收获。

  师:通过这节课,我们学到了什么知识?我们是用什么方法来研究这些知识的?

  2.评价。

  师:你对自己这节课的表现满意吗?

  可采取学生自评,互评,老师评价的方式进行。

  板书设计:

  有趣的平衡

  要保证竹竿平衡:中点左边两边棋子个数相同,且所挂位置与中点,刻度(距离)要相等。

  左右两边刻度数和所放棋子数的积相等时,竹竿才能保证平衡。

  作业设计

  基础:

  1.用边长20厘米的方砖铺一块地,需要20xx块,如果改用边长为40厘米的方砖铺地,需要多少块?

  综合:

  2.有一位菜贩很不老实,他有一架动过手脚的天平。这架天平的两臂不等长。有一天,当他向农民们购买实际重5千克的白菜时,就把白菜放在天平臂较短这一侧,这样称起来较轻,天平显示只有4千克重;而当他把白菜买出去的时候,他把白菜放在天平臂较长这一侧,这样称起来白菜会有多少千克重?

  提示:

  (1)可以像例题中一样,用列表的方法做。

  (2)根据臂长与质量成反比,列方程求解。

六年级数学下册教案4

  教学内容

  义务教育教科书人教版六年级数学下册第二章《百分数》第三课时完成练习二第6、7、8题。

  教学目标

  1、通过自己阅读,自主探究,了解纳税的意义。

  2、知道应纳税额与税率的意义。能根据具体税率,计算应纳税额。

  3、进行法制渗透,培养依法纳税的意识。

  教学重点:税率的理解和应纳税额的计算。

  教学难点:理解税收时的专有名词,理解税率的含义

  教法学法:教法:引导阅读、例题讲解、练习巩固。

  学 法:课前预习、独立思考、合作交流。

  教学准备:多媒体课件。

  教学过程:

  一、情境导入

  1、读一读

  (1)xx的研究、发射,国家财政投入10亿元。

  (2)教育部、财政部和国家统计局联合公布:20xx年国家财政性教育经费投资总额为31396.25亿元。

  (3)据了解,黄果树国家城市湿地公园总投资3.5亿元。

  2、这么多的钱从哪儿来?

  师:国家用收来的税款发展经济、科技、教育、文化和国防等事业。

  二、新授

  揭示课题:今天我们来学习百分数在生活中的特殊应用。板书:税率

  (一)税率的.意义

  1、请同学们打开书第10页,自行阅读。请你带着以下问题阅读,并在书中画出相关答语。

  (1)什么是纳税?

  (2)税收的种类

  (3)什么是应纳税额?

  (4)什么叫税率?(师:税率一般是由国家根据不用纳税种类定出不同的税率)

  (5)哪些人需要纳税?

  师注意板书:

  应纳税额:缴纳的税款叫做应纳税额。

  税率:

  2、法制教育:我国宪法第五十六条规定,“中华人民共和国公民有依照法律纳税的义务。”

  3、讨论:应纳税额与哪些条件有关?

  师:不同种类的税,征收标准不一样,也就是说不同税种的税率不同,所以应纳税额与税率有关;还与收入有关。

  4、怎样求应纳税额?

  板书:应纳税额=收入×税率

  (二)税率的有关计算

  (1)出示例3:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税约多少万元?

  (2)分析题目,理解题意。

  ①税率是多少?

  ②5%是什么意思?

  ③学生列出算式。

  师:求应纳税额,实际是求一个数的百分之几是多少。

  三、练习

  1、我是小小税法宣传员

  (1)税率是永远不变的。

  (2)各种收入与应纳税额的比率叫税率。

  (3)纳税只有我国才有,其他国家没有。

  (4)王叔叔说:“我付出劳动,得到工资,不需要纳税。

  2、解决问题

  (1)x华买了一辆5200元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。他买这辆摩托车一共要花多少元?

  (2)20xx年十月黄金周第一天黄果树景区接待游客10.74万人次,综合收入6100万元;如果综合收入的3%交纳营业税计算,这一天应缴纳营业税多少万元?

  四、总结

  今天你有什么收获?

  师:今天我们学习了税收的有关知识,希望同学们长大后,做一个诚信纳税的公民。

  五、课外延伸

  1、课后完成练习二第6、7、8题

  2、请有条件的同学们课后去税务局调查一下不同税种的税率。

六年级数学下册教案5

  教学目标

  1、知识与技能目标:

  (1)学生能正确判断应用题中涉及的量成什么比例关系,能正确利用正反比例的意义正确解答实际问题。

  (2)让学生掌握用比例知识解决问题的解题步骤和方法。

  (3)进一步提高学生运用已学知识进行分析、判断和推理的能力。

  2、过程与方法目标:

  经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。

  3、情感态度和价值观目标:

  感受数学知识与实际生活的密切联系,发展学生探究解决问题策略的能力,体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点

  教学重点:用比例知识解决实际问题

  教学难点:能够正确分析题中的比例关系,列出方程

  教学工具

  ppt课件

  教学过程

  一、复习旧知,导入新课。

  1、师:同学们,前几节课我们刚刚学习了正反比例的意义,首先我们通过一组练习来复习一下。

  2、课件出示习题。

  指名学生回答,并说明理由。

  3、揭题。

  师:这节课,我们就来学习用正反比例的知识解决问题。

  二、探究体验,获取新知。

  (一)、教学例5.

  师:我们先看看李奶奶遇到了什么问题?(课件出示例5)

  1、收集信息,理解题意。

  师:从图中你获得了哪些数学信息?

  (指名学生汇报)

  2、组织学生用学过的方法自主解决问题。

  师:你能用以前学过的方法解答吗?试一试。

  ①学生尝试用自己喜欢的方法解答,教师巡视了解情况。

  ②指名学生汇报解题方法,并让学生说一说是怎样想的。

  生可能的答案有:28÷8×10=35(元) 10÷8×28=35(元)

  ③教师指出也可用比例的知识解答。

  3、用比例知识解决问题。

  (1)学生独立思考和讨论问题。

  师:这道题还可以用比例的知识来解答,怎样用比例的知识解答呢?请同学们先思考和讨论以下问题。(课件出示)

  要求:先独立思考后,再小组内交流讨论。

  ①题中有哪两种相关联的量?

  ②哪个量是一定的?

  ③它们成什么比例关系?你是依据什么判断的?

  ④根据这个比例关系,你能列出等式吗?

  (2)学生交流讨论后,指名学生汇报,并引导学生概括出等量关系式。

  (3)学生尝试用正比例知识解决问题。

  师:你能完整的把这道题用比例知识解答吗?

  学生尝试用比例知识解答,教师巡视了解情况,知道个别有困难的学生。

  (4)指名学生板演过程,集体交流订正。教师提醒学生要检验。

  (5)师:你认为在解题过程中有什么需要注意的地方要提醒给大家呢?(指名学生回答)

  4.小结。

  思考以下问题:

  用比例知识解决这个问题的关键是什么?

  找到不变的量,只要两个量的比值一定,就可以用正比例关系解答。

  5.习题巩固

  我会分析:(课件出示)

  学生独立审题并解答。集体订正。

  (二)教学例6.

  1.课件出示例6.

  师:你能根据刚才总结的经验试着解决下面的.问题吗?

  2.课件出示自学提示:

  (1)题中有哪两种相关联的量?

  (2)哪个量是一定的?

  (3)它们成什么比例关系?

  (4)根据比例关系列出方程并解答。

  学生思考后独立解答,教师巡视了解情况,并指名板演。

  3.集体评讲。

  4小结。

  思考:

  1.你认为用比例解决问题的关键是什么?

  指名学生回答他生补充,课件出示总结。

  2.用正反比例解决问题的步骤有哪些?

  (1)学生先独立思考后,小组交流,指名汇报。

  (2)师生总结。(课件展示)

  ①找(找相关联的量)

  ②判(相关联的量成什么比例)

  ③列(列出方程)

  ④解(解方程)

  ⑤验(检验计算结果)

  三、习题巩固。

  基础练习:只列式不计算。

  1.运动会上,六年级同学进行大型体操表演,每行站20人,可以站18行;若每行站40人,可以站χ行?

  2.小兰身高1.5米,她的影长是2.4米,如果同一时间、同一地点测得一棵树的影长为4米,这棵树高χ米。

  3.小华读一本书,每天读10页,30天可以读完;如果每天多读5页,χ天可以读完。

  (学生先独立解答后,指名回答,并讲解列式的依据。)

  拓展练习:

  修一条路,计划每天修90米,40天完成,实际5天修了300米,照这样计算,多少天可以完成任务?

  (学生先独立解答,师巡视指导,找不同做法的同学回答,他生订正)

  四、作业

  教材63页练习十一4、5、7、8题。

  五、课堂小结。

  通过本节课的学习,你有哪些收获?

  指名学生说一说本节课的收获,他生补充。

  板书

  用比例解决问题

  例5 解:设李奶奶家上个月的水 例6 解:设原来5天的用电量

  费是x元。 现在可以用x天。

  28:8=x:10 25x=100×5

  8x=28×10 x=100×5÷25

  X=35 x=20

  答:李奶奶家上个月水费 答:原来5天的用电量现在

  是35元。 可以用20天。

六年级数学下册教案6

  设计说明

  1.注重培养学生学习的自主性。

  引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。

  2.培养学生的解题能力。

  本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。

  课前准备

  多媒体课件

  教学过程

  ⊙创设情境,提出问题

  1.介绍“物物交换”的背景知识。

  人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。

  2.呈现问题。

  同学们算一算,14个玩具汽车可以换多少本小人书?

  设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。

  ⊙尝试解决,体会联系

  1.想一想。

  师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。

  2.说一说。

  教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的`数量之间存在的关系。

  预设

  方法一 14÷4=3.5,3.5×10=35(本)。

  方法二 10÷2=5,14÷2=7,5×7=35(本)。

  方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。

  方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。

  ⊙自主学习,探究新知

  1.提出新的要求。

  师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?

  2.学生尝试列式。

  预设

  方法一 4∶10=14∶x。

  方法二 10∶4=x∶14。

  方法三 14∶4=x∶10。

  方法四 4∶14=10∶x。

  3.交流汇报写出比例的主要依据。

  4.学生独立解比例。

  5.汇报结果。

  预设

  生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。

  生2:我是这样计算的:

  4∶10=14∶x

  解:4x=140

  x=35

  6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。

  (师巡视,适时指导)

  7.验算:把求出的结果代入比例验算一下,看等式是否成立。

  (学生自主验算)

  8.教师小结。

  解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。

  设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。

六年级数学下册教案7

  【教学目标】

  1、能正确理解“打折”的含义,理解原价、现价和折扣之间的关系,能解决生活中和折扣有关的问题。

  2、在解决实际问题的过程中,培养学生观察、分析、推理、概括的能力,同时使学生学会灵活合理地选择方法。

  3、通过解决实际问题,使学生体会数学与实际生活的联系,同时通过对同一商品不同促销手段的对比分析,培养学生全面思考、理性消费的好品质。

  学情分析:对于乡村学生,少部分学生接触了解“打折”,他们这种对打折的认识还是比较被动的生活经验,并未真正理解折扣的知识,也没有建立起商业和数学、教材上的.百分数之间的联系。

  【教学重点】

  理解折扣的含义,并运用百分数的知识解决有关折扣的实际问题。

  【教学难点】

  应用折扣的含义,全面考虑问题,合理消费,并解决生活中的实际问题。

  【教学过程】

  一、创设情境,激发兴趣

  师:我想咱们班一定有同学去过大商场,细心的你们有没有发现在周末或过节,商场有一些促销活动呢?比如说“打折”。折扣是商业活动中的一个专用名词,也是本节课的一个数学知识,今天这节课,我们一起从数学的角度深入研究折扣。(板书:折扣)

  二、探索新知

  1、提出问题,认识“打折”。

  (1)师;关于打折,你们想知道些什么?(预设:什么叫打折?打几折是什么意思?什么情况下打折?)在课本第8页的第一段话中,有关于打折的解释,我们一起来看看吧!齐读第一段话。默读,请同学们用笔划出相关的内容。

  师:你从第一段话中知道了什么?

  (预设:(1)降价出售商品,叫做打折扣销售,俗称打折。(2)几折表示十分之几,也就是百分之几十。(3)打9折出售,就是按原价的90%出售。)

  (2)教师出示实例。引导学生总结出“折扣”的含义

  三折=(3/10)=(30)%五折=(5/10)=(50%)七五折=(75%)

  6/10=(六)折95%=(九五)折80%=(八)折

  (3)师生小结:几折就表示十分之几,也就是百分之几十。

  2、联系问题,认识按折扣出售

  (1)师:第一段话中,按九折出售,是什么意思?(预设:按原价的90%出售。)

  师:假如一件商品原价是100元,那么现价是多少呢?你能自己列式吗?

  说说你列式的依据是什么?(预设,大多数学生基本上都能列式。,100×90%=90(元),让学生说列式依据,就是根据提示,原价×90%=现价。)

  (2)师:如果我是一名售货员,几件商品都是原价100元,第一件商品打5折出售,你能知道假如一件商品原价还是100元,如果按5折出售,现价是多少?如果按七五折出售,现价是多少?说说你列式依据是什么?(预设,打5折,就是原价×50%是现价,打七五折,就是原价×75%=现价。同行学们,我们能不能通过刚才的举例总结一个数量关系式:原价×折扣=现价)

  3、求折扣数、求原价的折扣问题

  (1)师:小雨和爸爸在商场买东西,遇到一些问题,我们一起来帮助他们吧!我们一起看看第八页例一。请同学们齐读问题2遍。请同学们拿出笔,划出有效信息。说说你知道了哪些信息?(预设:自行车原价180元,现在按八五折出售,求现价。一个随身听,原价160元,现在只花了九折的钱,求比原价便宜了多少?)

  师:请同学们先独立完成,小组内再交流反馈。

  (2)例1(1)预设学生列式:180×85%=153(元)180×0.85=153元

  师:说说你的列式依据是什么?(预设:原价*折扣=现价)

  例1(2)预设学生列式:160-160×90%=16元160×(1-90%)=16元

  师:说说你的列式思路是什么?(预设:原价-现价=便宜的价格九折就是按原价的90%出售,单位“1”是原价,便宜了原价的(1-90%))

  (设计意图:使学生明白什么量就要找到与之对应的分率。让学生在对比中加深对折扣问题数量关系的理解。)

  (3)一本图书打八折后,便宜了9.6元,这本书原价多少钱?

  师:知道便宜的钱数,求原价,是例题1(2)的逆运算

  学生列式:9.6÷(1-80%)=48(元)

  答:这本书原价48元。

  (设计意图:使学生明白求原价(单位“1”)用除法)

  三、练习巩固

  今天,大家表现真棒啊,我们一起利用折扣的知识,来商场看看这些商品的现价是多少吧!

  完成第八页做一做,一定要记得列算式。交流反馈:说说你列式的依据是什么?(预设:这是一道基础题,考查的是对折扣知识的理解。原价*折扣=现价)

  小结:我们在购买东西也就是说我们买东西时不能只看原价或者折扣,因为价格会受到原价和折扣的影响。

  四、课堂总结。

  师:通过本节课,你有什么收获吗?

  (预设:了解了折扣的知识。知道了一个新的数量关系式:原价*折扣=现价,在购物时,一定要认真要分析原价和折扣是多少,现价是多少,购物一定要货比三家,选择性价比最高最实惠的商品,争当理财小能手。)

六年级数学下册教案8

  一、创设情境,再现知识

  谈话:同学们,上节课我们一起回顾了用字母表示数,体会了用字母表示数的优点。这节课老师又给同学们带来了一位老朋友,请看他是谁?(师板书X)看到老朋友,你想到了关于它的哪些知识?

  学生可能回答以下几个方面(方程、解方程、方程的解、列方程解应用题、等式、等式性质等知识)(师板书相关概念)

  这节课让我们和老朋友“x”一起回顾方程的有关知识,好吗?

  【设计意图】引导学生由字母x回忆起方程的有关知识点,更容易引起学生对已学知识的回顾整理。把知识拟人化更符合学生的心理特点,能充分调动学生参与学习探究的兴趣和欲望。

  二、梳理归网,学习内化

  1.回顾知识,自主梳理

  ①自己回顾每个概念的意义,同位交流。

  ②等式与方程有什么关系?方程的解与解方程又有什么不同?你能举例说明或画图表示吗?(小组合作,整理在练习本上)

  【设计意图】让学生通过自我回顾,忆起方程中各个概念的意义和联系,在举例中进一步区分等式与方程、方程的解与解方程等易混概念。

  2.交流展示,引导建构

  ①全班交流整理结果(展台展示,师及时点拨纠正存在问题)

  ②哪些是方程?哪些是等式?

  6x+8=11 8x-5x=15×0.2 30a+5b 7x-6<36 55x= (2.4+a)÷2.4=5 0.5×□+72÷18=8 1÷8=0.125 2.5X-7=13

  ③你会解这些方程吗?解方程的根据是什么?(等式性质)

  选择几个解一解。(展台展示交流)

  如何判断方程解的是否正确?在解方程时要注意一些什么?

  ④复习简易方程的解法、步骤及检验方法、书写格式。

  【设计意图】在交流中使学生明确:判断一个式子是不是方程,要把握两点,第一含有未知数,第二必须是等式。方程的解是未知数的数值,解方程是求这个数值的过程。

  3.提炼方法,认知内化

  (1)列方程解应用题可以帮助我们很容易的解决许多实际问题,怎样列方程解答应用题?关键是什么?(找等量关系,设未知数,列方程)

  (2)出示第101页第4题及改编题

  20xx年山东省应届大学生本科毕业生报考研究生的人数达到62300人,比20xx年增加了40%。20xx年应届大学生本科毕业生报考研究生的有多少人?

  ①你会用不同的方法解答吗?(学生板演,集体订正)哪种方法更适合这道题?为什么?

  ②如果已知20xx年的人数,求20xx年的人数,用哪种方法合适呢?

  引领反思:用方程解决问题与用算术法解决问题相比,有什么特点?相同之处是什么?(用方程解决问题能使较复杂的'思考过程变得简单)

  【设计意图】结合具体的题目,让学生分别用方程与算术法解答,通过对比分析两种解答方法的基本思路及特点,体会两种思路的区别,能选择合适的方法解答。

  三、综合应用,整体提高

  1.判断下面各题,哪些适合用算术方法解,哪些适合列方程解,为什么

  ①一个三角形的面积是45平方厘米,底是12厘米,高多少厘米?

  ②在学校组织的数学竞赛中,六年级得一等奖的有56人,得二等奖的人数比一等奖的人数的2倍还多8人,得二等奖的有多少人?(如果知道二等奖的人数,求一等奖的人数用哪种方法合适?)

  2.我是“精选细算“小英才

  课本101页5—8题(学生独立做,集体订正)

  3.智力冲浪

  课本101页9—11题(这是含有两个未知量的题目,教师重点引导学生用一个未知数表示两个未知量。)

  【设计意图】练习时,让学生思考用方程还是算术法解答,通过对比分析选择合适的方法解答,感受方程解题的优越性。

  四、总结提升,知情共融。

  这节课我们整理和复习方程的有关知识,谁来说一说有哪些收获?

六年级数学下册教案9

  教学内容:

  人教版六年级下册“整理和复习”第118——119页.

  教学目标

  1、知识目标:

  (1)了解邮票的作用。了解确定邮资的2个因素。

  (2)理解、掌握确定邮政资费的方法,会根据条件选择合理的方案。

  2、能力目标:

  (1)通过数学学习活动,学会运用数学的思维方式去解决日常生活中的一些问题。

  (2)培养学生的组合意识,培养学生的探究能力,推理能力。

  (3)增强应用数学的意识,发展学生的实践能力和创新精神。

  3、过程与方法:

  学生通过自学资费标准,明确要解决的问题。通过自主探究和讨论交流,找出解决问题的方法,并验证方法的合理性。

  4、情感目标:

  培养学生的审美意识,感受数学在生活中的'价值。

  教学重、难点

  重点:掌握不同信件的资费办法,理解确定邮资的2大因素。

  难点:理解不同信件的资费的标准,探究合理的邮资支付方式。

  教具准备

  布置学生调查一些关于邮票和邮政资源的信息,收集一些邮票。

  教学过程

  一、创设情景,生成问题

  今天老师这里有个谜语要考考大家咯,准备好了吗?

  (课件)“猜谜”:薄薄一张纸,四边细牙齿,两地朋友要谈心,必须请他当差使。

  师:过去是“一封家书抵万金”,居住在两地的人们通过寄信来传递信息。现在通讯发达了,寄信的人少了,但是人们还是喜欢邮票,那是因为邮票既有收藏的价值又设计得很精美。今天,杨老师就给你们一个机会来欣赏一下中国收藏价值最高的邮票——“全国山河一片红”。(简叙其历史背景)

  大家知道,寄信的时候用的邮票的面值和数量都不太一样,请大家欣赏屏幕上的邮票,谈谈各自的发现;其实邮票中也隐含着不少数学知识,今天我们就来研究邮票中的数学问题。

  板书课题:邮票中的数学问题。

  (设计意图:通过猜谜语激发学生的学习兴趣,介绍中国收藏价值最高的邮票—————全国山河一片红,使学生了解中国历史,增强他们的爱国主义情感。)

  二、探索交流,解决问题

  师:我这里有两封信,一封贴的邮票是0·80元,另一封贴的是1·20元,邮资是不同的,谁愿意猜一猜,邮资的多少应该是由哪些因素决定的?

  生1:与信的质量大小与邮寄的路程远近有关。

  生2:信封越重,花的钱越多,路程越远,邮资也越高。

  师:很好,大家的意见很有道理,请同学们翻开书,阅读第118页中间的表格,看看邮资与信函的质量、投寄的地址有着什么样的关系。

六年级数学下册教案10

  教学目的:

  1、培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。

  2、培养学生认真审题的良好学习习惯。

  教学重点:

  灵活运用周长或面积公式解决实际问题。

  教学过程:

  一、周长与面积的区别。

  1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?

  2、计算下题。求出它的周长与面积。

  (1)学生动手计算。

  (2)周长与面积有什么不同?

  概念不同,计算公式不同,单位不同。

  3、判断。两个图形相比较,哪个图形的周长长,哪个图形的面积就大。

  (错。周长的长短和面积的大小没有必然的联系。)

  二、运用所学知识解决实际问题。

  1、一个圆形花坛,直径是4米,周长是多少米?

  =(米)

  2、一个圆形花坛,周长是米,直径是多少米?

  =4(米)

  3、一个圆形花坛的半径是2米,它的面积是多少平方米?

  =(平方米)

  4、一个圆形花坛的周长是米,它的面积是多少平方米?

  r=()=2(米)=(平方米)

  5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?

  6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)

  7、一个圆形餐桌面直径是2m,它的周长多少米?它的面积是多少米?如果一个人需要宽的位置就餐,这张餐桌大约能坐多少人?+

  三、综合练习。

  1、判断对错,(1)圆的半径都相等。()

  (2)在同圆或等圆中圆周长约是半径的倍。()

  (3)半圆的`周长是圆周长的一半。()

  2、只列式不计算。

  (1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?

  (2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?

  (3)一个圆形铁板的周长是分米,它的面积是多少平方分米?

  3、说一说下面各题的解题思路。

  (1)一个圆形花坛,直径是5米,小明围着它跑了5圈,小明一共跑了多少米?

  (2)在草地的木桩上栓着一只羊,绳长3米,这只羊能吃到草的面积最大是多少平方米?

  四、布置作业

  练习十七1-3,思考第4题。

六年级数学下册教案11

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话揭题

  1.谈话。

  (1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?

  预设

  生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。

  生2:三角形的面积计算公式是“底×高÷2”。

  ……

  (2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?

  预设

  生1:我们学过长方体、正方体、圆柱、圆锥。

  生2:长方体的表面积……

  2.揭题。

  我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。

  ⊙回顾与整理

  1.提问:如何求组合图形、不规则图形的周长或面积?

  (一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)

  2.提问:如何计算立体组合图形的表面积或体积?

  (1)学生分组讨论。

  (2)指名汇报。(学生自由回答,合理即可)

  (3)教师小结。

  在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。

  在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。

  无论是分割还是添补,都是把复杂的图形转化成简单的图形。

  ⊙典型例题解析

  1.课件出示典型例题1。

  (1)求阴影部分的面积。(单位:cm)

  分析 本题考查学生求组合图形面积的能力。

  因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。

  解答 20×16-12×20÷2-8×16÷2=136(cm2)

  (2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)

  分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。

  观察图形可以看出:阴影部分的面积加上三角形EFC的`面积等于大三角形DEG的面积,而梯形ABEF的面积加上三角形EFC的面积等于大三角形ABC的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形ABEF的面积相等,只要求出梯形ABEF的面积就可以求出阴影部分的面积。

  解答 (8-3+8)×6÷2=39(cm2)

  2.课件出示典型例题2。

  将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体,求这个物体的表面积。

  分析 本题考查的是求立体组合图形表面积的能力。

  如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。

  物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积

  解答 2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1

  =157+31.4+18.84+6.28

  =213.52(m2)

六年级数学下册教案12

  教学目标:

  1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

  2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

  3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

  课前准备:教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物。

  教学设计:

  一、 情景导入

  1、 我们生活在一个多姿多彩的大千世界,在我们的身边随处可见各种各样不同形状的物品,你们看——(课件出示),你能说出哪些物体的的形状是圆柱?(指名说)在我们的生活中,你还见过哪些形状是圆柱的物体?(指名说)

  二、 探究体验

  1、 认识圆柱

  请同学们拿出课前准备的圆柱形状的物体,仔细观察,并用手摸一摸它的表面,你发现了什么?

  (1) 学生观察,并用手摸表面。

  (2) 集体交流。(指名说)(教师随机介绍并板书:圆柱的上、下两个面叫做底面,它们是完全相同的两个圆。圆柱还有一个曲面,叫做侧面。

  (3) 通过刚才的仔细观察,动手实践,同学们都有所发现,下面我们一起来整理一下。(课件出示)这就是圆柱的特点,我们一起来读一下,注意我有一个要求,就是要把关键词重读出来,能做到吗?(齐读一遍)

  (4) 师介绍:圆柱两底之间的距离叫做高。大家想一想:圆柱有多少条高?(无数条)

  2、 圆柱的侧面积。

  (1)(出示)师:这是一个(圆柱)形状的茶叶桶,谁能给大家指出这个圆柱各部分的名称?(指名到前面来指)

  (2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)

  (3)那大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)

  师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,得到了一个(长方形),也就是说圆柱的侧面展开后是一个(长方形)

  (4)下面请同学们认真观察,想一想:

  ①我们得到的这张长方形纸的长和宽分别与这个圆柱形茶叶桶有什么关系?

  ②长方形的面积与茶叶桶的侧面积有什么关系?(课件出示)

  同桌互相讨论一下。

  集体交流。(指名说,教师随即板书)

  长方形的面积 长 宽

  圆柱的侧面积 底面周长 高

  (5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高

  这就是我们一起推导出来的圆柱的侧面积公式,一起读两遍,记住它。

  那大家想一想,要想计算圆柱的侧面积必须得知道哪两个条件?(圆柱的底面周长和高)

  三、 实践应用

  刚才通过我们打家共同的努力一起推导出了计算圆柱侧面积的公式,下面我们就应用这个公式,走进生活,去解决生活中的`问题。

  1、这个茶叶桶,课前我测量出它的底面周长是()厘米,高是()厘米,大家能不能求出它的侧面积?

  2、某罐头厂要给生产的罐头瓶贴上商标包装纸(接头处不计),已知这种罐头瓶高10厘米,底面直径为12厘米(如图所示),贴一个这样的罐头瓶商标要用多少包装纸?

  3、请同学们拿出你课前准备的圆柱形的物体,同桌合作:先动手测量出要求它的侧面积所需要的数据,然后在练习本上计算它的侧面积。

  四、课堂小结。

  通过这节课的学习,你都有什么收获?(指名说)

  五、拓展延伸

  1、在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。

  2、课后练一练1、3题做在练习本上。

六年级数学下册教案13

  教学目标

  1.联系同学们的生活实际,通过观察、操作,了解点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体,认识圆柱和圆锥,掌握圆柱和圆柱的基本特征,激发同学们的探究欲望。

  2.通过观察、思考、操作、讨论等活动,培养同学们自主学习、合作探究的良好品质。

  教学重、难点

  理解并掌握圆柱、圆锥的基本特征。

  教学过程

  一、情境导入

  1.教师拿一根一头拴着一个小球的绳子甩动,问:你们看到了什么? 再让学生结合书第2页2、3题,想一想你发现了什么?

  最后总结出点的移动可以得到线,线的移动可以得到面,面的旋转可以得到体的结论。

  2.教师出示一个袋子,里面装着各种物体(长方体、正方体、球、圆柱、圆锥、圆台)

  游戏规则:一人上台摸,并描述你摸到的这个物体的最典型的特征,使下面同学能在最短的时间内猜出你摸的这个物体的名称。

  师生共同活动。在摸出物体后,教师让学生回忆一下以前学过的长方体、正方体的特征。

  引出这节课要探究圆柱和圆锥。板书课题:圆柱和圆锥

  二、 探究圆柱和圆锥的特征

  1.从生活的实景图中发现圆柱和圆锥。

  从书第2页找一找的实景图,找出我们学过的立体图形,与同伴互相指一指,哪些是圆柱和圆锥,并指名回答。

  2.小组合作学习,探究圆柱、圆锥的`特征。

  用各种方法,如摸、量、画等,观察带来的圆柱、圆锥形实物,你们有哪些发现?用手中的工具验证你们的猜想。并填写小组合作学习的报告。

  小组合作学习表格:

  研究对象

  你们猜想它有哪些特征?

  你们是用怎样的方法验证你们的猜想的?把验证方法记录下来,与同学交流。

  3.小组汇报反馈。

  教师抓住几个关键点进行引导:

  圆柱的特征:

  ⑴两个底面、一个侧面。底面是由两个大小完全相等的圆组成。侧面是一个弯曲的面。

  ⑵认识圆柱的高,并会测量圆柱的高。如果没有学生探究这个问题,教师要示范两个底面大小差不多的圆柱,让学生观察它们的高不同,从而引导学生关注圆柱的高(圆柱两个底面的距离叫做高)。圆柱有无数条高,每条高的长度相等。

  圆锥的特征:

  ⑴由一个底面(圆)、一个侧面(曲面)组成。

  ⑵从圆锥的顶点到底面圆心的距离是圆锥的高。引导学生掌握测量圆锥的高的方法。

  小结:通过刚才的合作学习和交流,我们更进一步认识了圆柱和圆锥的特征。你能说一说你现在知道了圆柱和圆锥有哪些特征吗?

  4.说一说

  课本3页,让学生再次系统地看一看圆柱和圆锥各部分的名称。拿一个你准备好的圆柱和圆锥,同桌互相说一说它们各部分的名称。

  说一说,在生活中见到的哪些物体的形状像圆柱、圆锥?指名回答。

六年级数学下册教案14

  一、教学目标

  1、能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

  2、会在方格纸上用“数对”确定物体的位置。

  3、发展空间观念,初步体会到数形结合的思想。

  4、体会生活中处处有数学,提高运用知识解决实际问题的能力。

  二、教学重点

  使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

  三、教学难点

  在方格纸上用“数对”确定位置。

  1、教法

  情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。

  2、学法

  积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。

  四、教学准备

  1、多媒体课件

  五、教学过程

(一)谈话导入

  1、师生谈话。

  1)学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?

  2)这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?

  3)这位同学的座位是在第3排,大家知道这位同学是谁吗?

  2、导入新课。

  今天这节课,我们就一起来学习确定位置的方法。

  1)板书课题:用数对确定位置

  2)设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。

  二、探索新知

  1、教学例1。

  (1)出示例题1教学图。

  让学生观察图,说说张亮同学坐在第几列?第几行。

  (竖排叫做列,横排叫做行)

  (2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。

  (3)让学生用数对表示王艳和赵强的位置。

  王艳(3,4)赵强(4,3)

  (4)小结。

  确定一个同学在教室的`位置,要考虑两个要素:第几列和第几行。

  设计意图:通过具体的实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的过程

  2、完成第3页的“做一做”。

  课件出示电影院和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。

  (电影院用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。

  设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。

  3、教学例2。

  (1)认识方格图。

  出示动物园示意图。

  指导学生观察图。

  这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。

  (2)用数对表示图中各场馆的位置。

  提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?

  大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示

  你们能用数对表示其他场馆所在的位置吗?

  熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)

  (3)根据数对标位置

  在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。

  设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。

  三、巩固运用

  1、小游戏:看谁反应最快。

  老师说出一组数对,相应的同学要在3秒内起立。

  2、做一做。(课件出示)

  设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。

  四、课堂总结

  这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。

  五、板书设计

  1、用数对确定位置

  2、竖排叫做列从左往右

  3、横排叫做行从前到后

  4、张亮坐在第2列第3行(2,3)

六年级数学下册教案15

  【教学目标】

  1、使学生理解求圆锥体积的计算公式.

  2、会运用公式计算圆锥的体积.

  【教学重点】

  圆锥体体积计算公式的推导过程.

  【教学难点】

  正确理解圆锥体积计算公式.

  【教学步骤】

  一、铺垫孕伏

  1、提问:

  (1)圆柱的体积公式是什么?

  (2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

  2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

  二、探究新知

  (一)指导探究圆锥体积的`计算公式.

  1、教师谈话:

  下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

  2、学生分组实验

  3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)

  ①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

  ②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

  ③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

  4、引导学生发现:

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.

  5、推导圆锥的体积公式:

  圆锥的体积是和它等底等高圆柱体积的1/3

  V=1/3Sh

  6、思考:要求圆锥的体积,必须知道哪两个条件?

  7、反馈练习

  圆锥的底面积是5,高是3,体积是()

  圆锥的底面积是10,高是9,体积是()

  (二)教学例1

  1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?

  学生独立计算,集体订正.

  2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?

  3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)

  (1)已知圆锥的底面半径和高,求体积.

  (2)已知圆锥的底面直径和高,求体积.

  (3)已知圆锥的底面周长和高,求体积.

  4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?

  三、全课小结

  通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

  四、随堂练习

  1、求下面各圆锥的体积.

  (1)底面面积是7.8平方米,高是1.8米.

  (2)底面半径是4厘米,高是21厘米.

  (3)底面直径是6分米,高是6分米.

  【板书设计】

  圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.