《最小公倍数》教案

时间:2025-10-17 11:41:04 教案 我要投稿

《最小公倍数》教案

  作为一位杰出的老师,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。来参考自己需要的教案吧!以下是小编整理的《最小公倍数》教案,希望对大家有所帮助。

《最小公倍数》教案

《最小公倍数》教案1

  教学内容:

  苏教版义务教育教科书《数学>五年级下册第43~44页例1 1、例1 2和“练一练’’,第46练习七第9~10题。

  教学目标:

  1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。

  2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

  3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。

  教学重点:

  求两个数的公倍数和最小公倍数。

  教学难点:

  理解求公倍数和最小公倍数的方法。

  教学准备:

  小黑板

  教学过程:

  一、揭示课题

  揭题:我们已经学习了公因数和最大公因数,今天这节课学习公倍数和最小公倍数。(板书课题)

  提问:看了这个课题,你有什么想法? 你对公倍数有哪些想法?对最小公倍数呢?

  引导:大家交流的想法,实际上是联系公因数和最大公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)

  二、学习新知

  1.认识公倍数。

  (1)出示例11,让学生说说知道了些什么,提出的什么问题。

  引导:用长3厘米、宽2厘米的长方形铺两个正方形,哪个正好铺满,哪个不能铺满?看图想一想是为什么,你能不能根据自己的想法写出算式来说明理由,并和同桌互相说一说?

  交流:哪个正方形能正好铺满,哪个不能铺满?

  提问:联系铺满长方形的图形,观察列出的算式,你觉得6和3、2这两个数有怎样的关系?

  说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。

  (2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的.正方形?为什么?和同桌说说你的想法。

  交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米的正方形)

  你发现正方形的边长厘米数只要满足什么条件,就能用这个长方形正好铺满? 像这样能被正好铺满的正方形有多少个,能找得完吗?

  (3) 引导:现在你发现,6、12、18、24这些数和2、3都有什么关系?说说你的想法。 指出:同学们的理解还真不错!大家发现6、12、18、24这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)

  追问:8是2和3的公倍数吗?为什么不是?

  那哪些数是2和3的公倍数呢?(板书:6,12 ,18,24是2和3的公倍数)为什么公倍数里要用省略号?你还能任意再说几个2和3的公倍数吗?

  2.求公倍数。

  出示例12,明确要找6和9的公倍数和最小的公倍数。

  让学生独立找出6和9的公倍数和最小的公倍数,与同桌交流自己的 方法。 交流:你是怎样找出6和9的公倍数和最小的公倍数的?

  结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。

  小结:大家用不同的方法找出了6和9的公倍数有18,36,54其中’最小的是18。 18是6和9的最小公倍数。

  追问:有没有最大的公倍数?为什么?

  说明:两个数的公倍数有无数个,没有最大的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)

  3.用集合图表示公倍数。

  引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。 学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。

  让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。

  指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。

  三、巩固深化

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习七第9题。

  4.做练习七第10题。

  四、总结提升

  引导:今今天学习的是什么内容?什么是两个数的公倍数和最小公倍数? 可以怎样找两个数的公倍数和最小公倍数?写公倍数时要注意什么?

《最小公倍数》教案2

  活动目的

  1、理解最小公倍数的意义.

  2、培养学生良好的思维品质和科学的思维方法.

  活动题目

  有两个自然数,它们的最小公倍数是48,那么这两个自然数各是多少?

  活动过程

  1、学生分小组讨论.

  2、小组汇报.

  3、师生共同研究方法,理解求最小公倍数的几种情况.

  参考答案

  由题意可知,48是所求两个自然数的最小公倍数,那么所求两个自然数一定是48的约数,因此我们可以找出48的.所有约数,然后进行两两组合,便可找出符合条件的数组.

  48的约数有:1、2、3、4、6、8、12、16、24、48经试验,符合条件的数组有:1和48,2和48,3和16,3和48,4和48,6和16,8和48,12和16,12和48,16和24,16和48,24和48,48和48.一共有14个数组.

  活动说明

  学生寻找符合条件的答案的过程,实际上就是培养学生思维有序化的过程.

  约分

  教学目标

  1.理解和掌握约分的方法.

  2.掌握最简分数的概念.

  教学重点

  掌握约分的方法.

  教学难点

  训练学生很快看出分子、分母的公约数,并能够准确判断约分的结果是不是互质数.

  教学步骤

  一、铺垫孕伏.

  1.口算.

  135÷552÷1333÷356÷799÷3

  45÷966÷1124÷836÷12125÷5

  2.投影出示下列各题,学生自由回答.

  (1)说出能被2、3、5整除的数有哪些特征?

  (2)说出下面每组两个数的公约数.

  18和2412和309和72

  (3)指出下面哪两个数是互质数.

  3和812和85和27和4

  (4)在括号里填上适当的数,并说出你的根据.

  二、探究新知.

  (一)教学例1.

  例1.把化简.

  1.启发学生思考化简的实际含义.

  教师提问:看到例题1这个题目,你想做些什么呢?

  学生回答:把分数的分子分母都变小.根据分数的基本性质能把化成分子、分母都比较小的分数.

  2.分组讨论:结合分数的基本性质,怎样将化简?

  (1)分母24、分子18有公约数2,先用公约数2去除分子、分母

  (板书:)

  (2)9和12还有公约数3

  (板书:)

  教师明确:分子和分母是互质数就不能再化简了,这种过程叫约分.

  3.引导学生总结归纳出约分的意义.

  板书:

  4.揭示最简分数的概念.

  5.反馈练习.

  指出下面哪些分数是最简分数.

  (二)教学例2.

  例2.把约分.

  1.学生独立解答,集体订正.

  2.师生共同小结:在约分时要把分子、分母的公约数记在脑子里,直接口算,通常要

  除到得出最简分数为止.如果一下能看出分子和分母的最大公约数,直接用它们的最大公约数一次约分比较简便.

  3.反馈练习.

  把下面的分数约分.

  三、全课小结.

  通过今天的学习,谈谈你学到了哪些新知识?

  四、随堂练习.

  1.回答.

  (1)判断下面哪些分数是最简分数,并说出为什么?

  (2)观察下面每个分数的分子和分母,哪些有公约数2?哪些有公约数5?哪些有公

  约数3?

  2.下面哪些分数没有约成最简分数?

  五、布置作业.

  把下面各分数约分.

  六、板书设计

《最小公倍数》教案3

  教学目标

  1、使学生理解公倍数和最小公倍数的含义,学会用列举法找两个数的公倍数和最小公倍数。

  2、培养学生主动探究的意识和能力。

  教学过程

  (一)问题情境引入

  师:五(4)班小天使雏鹰假日小队有甲乙两个小组,他们约定甲组每天到社区参加一次劳动,乙组每9天到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?

  (二)新课展开

  1.建立公倍数、最小公倍数的概念。

  (1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。

  学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:

  生甲:我们画了一条表示天数的数轴,然后分别找出甲组.乙组第一次同时去后经过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。

  可由学生边讲边画出示意图,也可由教师根据学生回答板书。

  教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?

  生甲:还会相遇,不过画图找太麻烦了。

  生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。

  教师板书学生思路:

  甲组经过:6天、12天、18天、24天、30天、36天……

  乙组经过:9天、18天、27天、36天、45天……

  所以经过18天、36天……他们会再次相遇。

  ……

  师:(指板书)请同学们观察一下,甲组经过的天数、组经过的天数实际上是什么数?

  生:甲组、乙组经过的天数分别是6的倍数和9的倍数。

  6的倍数:6、12、18、24、30、36……

  9的倍数:9、18、27、36、45……

  师:我们还可以用集合图来表示,师生共同画出:(图略)

  师:上节课我们学习了公约数、最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?

  生讨论后得出:18、36既是6的倍数,又是9的倍数,是6和9的公有倍数,即是6和9的公倍数,18是6和9的公倍数中最小的可以称为最小公倍数。

  (1)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)

  (2)师:那么什么叫公倍数、最小公倍数?

  学生讨论后得出:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。(也可让学生自学课本后回答,教师再板书)

  师:有没有最大公倍数,为什么?

  生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公倍数还有54、72、90……无穷无尽。

  3、用列举法求两个数的`公倍数、最小公倍数,你能再找一找6和4的公倍数、最小公倍数吗?

  4、做课本第54页练一练第1题,学生试算后,反馈。

  生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。

  教师随学生叙述板书:

  6的倍数有:6、12、18、24……

  4的倍数有:4、8、12、16、20、24……

  6和4的公倍数有:12、24……

  6和4的最小公倍数是12。

  (2)师生共同小结方法。

  (3)练习:<1>完成课本练一练第2题。

  <2>完成课本练一练第3题。

  <3>完成课本练一练第4题。

  <4>完成课本练一练第5题。

  (三)课堂小结

  通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等有关概念外,还应注意学习方法、情感等方面的总结。)

《最小公倍数》教案4

  教学要求通过比较,使学生进一步分清求最大公约数和最小公倍数的相同点和不同点,并能正确地求出几个数的最大公约数和最小公倍数。

  教学重点比较求两个数的最大公约数和最小公倍数的不同点。

  教学用具在投影片上画好教材第80页的表格(留空备用)

  教学过程

  一、创设情境

  1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。

  2.很快说下面每组数的最小公倍数。

  5和79和459和122、3和118、10和403、4和6

  二、探索研究

  1.教学例5。

  (1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):

  28422842

  71467146

  2323

  28和42的最大公约数是:42和28的最小公倍数是:

  2×7=142×7×2×3=84

  (2)揭示课题:我们现在来比较一下,求两个数的最大公约数和最小公倍数的方法有什么相同点和不同点。(板书课题:最大公约数和最小公倍数的比较)

  (3)出示留空的表格。

  先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。

  (4)看表上的不同点回答。

  为什么它们在计算时不相同?

  使学生明确:

  ①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。

  ②而两个数的最小公倍数不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的.质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的最小公倍数。

  (5)尝试练习。

  做教材第80页的“做一做”,然后点几名学生说一说是怎样做的。

  三、课堂实践

  做练习十六的第2题。

  四、课堂小结

  学生小结求两个数的最大公约数和最小公倍数的异同点。

  五、课堂作业。做练习十六的3、4、5、6*题。

  四、分数的意义和性质

《最小公倍数》教案5

  教学目标

  (1)使学生理解、掌握求两个数的最小公倍数的算法和算理,并能正确地、合理地求两个数的最小公倍数。

  (2)培养学生观察、分析、概括的能力。

  教学重点、难点

  重点、难点:理解、掌握求两个数的最小公倍数的算法和算理。

  教具、学具准备

  教 学过程

  备 注

  一、复习引入。

  1、师:上一节课我们研究了公倍数和最小公倍数,还学会了找两个数的最小公倍数。现在你能不能找出12和30的最小公倍数,写在本子上。

  学生做后,反馈,教师按学生的记叙板书:

  12的倍数有:12、24、36、48、60......

  30的倍数有30、60、90、120......

  12和30的最小公倍数是60。

  2、师:同学们用列举的方法,依次列出两个数的倍数,再从中选出最小公倍数。这种方法好不好呢?请同学们再试一试,找出810和1350的最小公倍数。

  教师巡视,学生算了很长时间仍未解决,这时有学生提出;这种方法虽然能找到它们的最小公倍数,但太麻烦了。有没有更简便的方法呢?

  师:今天这节课我们就是要重点研究如何“求两个数的最小公倍数”。(板书课题)

  二、新课展开

  1、研究算理,探究算法。

  (1)同学们,还记得我们是怎样发现求两个数的最大公约数的方法的?

  生:我们通过分解质因数,发现了两个数全部公有质因数连乘的'积就是它们的最大公约数,所以我们用短处法可以求出最大公约数。

  (2)师:那么求两个数的最小公倍数能不能也用分解质因数的方法呢?我们一起试一试。

  请学生把12、30和60分别分解质因数。(教师板书)

  (竖式略)

  12=2×2×3

  30=2×3×5

  60=2×2×3×5

  师:请同学们观察上面各数分解质因数的情况,你发现了什么?四人小组讨论。

  教学过程

  备 注

  师生逐步讨论得出:最小公倍数60的质因数里包含12和30公有的质因数2、3,还有12独有的质因数2、30独有的质因数5。

  (教师在黑板上将公有质因数、独有质因数标出标记)请同学们再想一想:

  A、为什么独有的质因数要全部取上,少一个行不行?

  B、为什么公有的质因数只选一个作代表多选一个行不行?

  学生分别进行检验,讨论明确。

  (3)师:你们的这个发现是否具有普遍性呢?请大家再亲自试一试。让学生把6、8及它们的最小公倍数244分解质因数。

  6=2×3

  8=2×2×2

  24=2×2×2×3

  实践再一次征实:两个数的最小公倍数中必须包含两个数所有的质因数。公有质因数选一个作代表,独有的质因数全部取上。

  2、用短除法求两个数的最小公倍数。

  (1)教学例2,用简便方法12和30的最小公倍数。师:现在你能用我们发现的这个规律,求出两个数的最小公倍数吗?

  方法:学生独立完成,再小组讨论,最后看课本。

  指名汇报,教师板演:

  用公约数2除

  用公约数3除

  只有公约数1,不必再除

  把所有的除数和商乘起来,得到:12和30的最小公倍数是2×3×2=60,也可以这样表示:[12,30]=2×3×2×5=60

  (2)讨论:如何用短处法求两个数的最小公倍数?

  讨论后,指名汇报,请学生打开课本,看与课本上总结的方法是否一致。

  三、巩固练习,加深理解

  1、求180和1350的最小公倍数。

  师:现在你能求出810和1350的最小公倍数吗?学生用短处法求得:

  [810、1350]=4050

  师:你认为用短处法和列举法求最小公倍数那种方法简便?

  2、做课本第60页练一练第2题。

  3、试一试:求12和36,9和5的最小公倍数。

  (1)学生试做后反馈;

  [12]=2×2×3×3=36[9,5]=9×5=45

  (2)师:你发现了什么?(四人小组讨)

  生:36是12的倍数,36就是两个数的最小公倍数;9和5互质,它们的积就是最小公倍数。

  师:能不能按照你们发现规律,求出下面每组两个数的最小公倍数?能口算的要口算。

  第一组:9和18200和50

  第二组:11和73和8

  第三组:14和824和20

  小结:如果大数是小数的倍数,那么大数就是这两个数的最小公倍数;如果两个数是互质数,那么这两个数的乘积就是他们的最小公倍数;如果这两个数既不互质,也不成倍数关系,可用短除法求出。

  4、做课本第60页第3题。

  5、做课本第60页第4题。

  四、课堂小结

  1、这节课我们学会了什么?怎样求两个数得最小公倍数?

  2、这个方法我们是怎样研究得到的?

  你认为求两个数的最小公倍数时应注意些什么?

  五、作业《作业本》

  通过分解质因数的方法,让学生理解求最小公倍数的算理。在用短除法求最小公倍数时,要引导学生学生区分同求最大公约数的区别。

《最小公倍数》教案6

  教学内容 第十册数学P72—74最小公倍数

  教学目标

  1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。

  2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。

  3、培养学生的积极学习情感,学会欣赏他人。

  教学过程

  一、再现原有知识结构

  1、用短除法求30与45的最大公约数

  独立完成,一人板演,集体订正。

  师提问:怎样用短除法求两个数的最大公约数?

  (评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)

  二、构建新的知识结构

  1、揭示课题

  今天我们来研究最小公倍数。(板书课题)

  2、明确意义

  师:你认为什么是最小公倍数?

  生1:两个数公有的最小的倍数。

  师:说的很好,你很会扩写。(生笑)

  生2:两个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。

  生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的.最小公倍数。师:太好了,谁能再说一遍。

  生说完师出示,齐读。

  (评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)

  3、探讨求法

  出示:求4与5的最小公倍数。

  师:你认为可以怎样求两个数的最小公倍数?

  生1:用短除法。(师板书:短除法)

  师:oh,你会吗?

《最小公倍数》教案7

  教学目标

  1、会利用列举法和短除法找出两个数的公倍数和最小公倍数。

  2、理解分倍数和最小公倍数的含义。

  3、在探索中发现,在发现中体验数学的自身规律的魅力,从而激发学生持久的学习兴趣。

  教学重点

  教学难点理解两个数的公倍数和最小公倍数的意义,能正确地运用和列举法和短除法确定两个数的最小公倍数。

  教学方法合作学习法、小组探究法、知识迁移法

  教学准备复习题

  教学过程:

  一、温故知新

  1、什么叫公因数?

  2、什么叫最大公因数?

  3、写出下列各组的最大公因数

  3和7 4和6 9和18 12和30

  引出新课

  二、师生共研

  1、公倍数和最小公倍数的认识。

  以4和6这组数为例,就在50以内数表中找一找。你发现了什么?

  (1)4的`倍数:4、8、12、13、20、24、28、32、36、40、44、48。

  (2)6的倍数:6、12、18、24、30、36、42、48。

  (3)两个都有的:12、24、36、48。

  引出课题:公倍数和最小公倍数

  2、怎样找出两个数的最小公倍数介绍短除法

  (1)让学生以小组的形式探讨,看看如何用短除法来求两个数的最小公倍数。再交流。

  (2)反馈时围饶着以下几个方面交流:

  短除式中除数是2的什么数?

  为什么在得出商2和3时不再往下除?

  4和6的最小公倍数是怎么计算的?

  (3)师生共同探究与交流。

  (4)试一试:你能找出12和16的公倍数和最小公倍数吗?

  让学生用自己喜欢的方式找一找,再用另一种验证。

  重点反馈短除法。

  3、探究特殊关系的两数怎样确定它们的最小公倍数。

  先让学生独立完成

  思考后交流自己的发现

  三、全课总结

  1、这节课我们交的新朋友是什么?你现在对它知道多少?

  2、怎样找两个数的最小公倍数?

  (1)先定关系

  (2)确定用什么方法找

  3、有什么问题或发现?

  四、布置作业:

  2、3、4、5

《最小公倍数》教案8

  教学目标:

  1、理解公倍数,最小公倍数的意义.

  2、会用列举法,分解质因数,短除法求两个数的最小公倍数.

  3、会求是互质数或有倍数关系的两个数的最小公倍数.

  4、在知识的探究过程中,培养大胆质疑的习惯.

  教学过程:

  一、导入:

  同学们,昨天我们班在舞台旁30米长的花带上每隔2米种一株桂花,树种的太密了,下午要重种,改成每隔3米种一株。现在大家出出主意,下午怎样种才能又快又好的完成任务呢?我一边说一边把课前准备好的图片分给各小组,让各小组讨论交流后交由小组长汇报本组的方案。各组讨论后出现以下三种情况:

  1、全部拔起,重新测量后再种

  2、头尾不动,把中间的全部拔起,重新测量后再种

  3、除头、尾不动外,还有6米、12米、18米、24米共六株不用拔,只需拔10株,在每两株中间种一株,这样重种5株就可以啦。

  师:刚才有4组采用了第三种方案该种的,这种方案确实比前两种方案要好,现在请你们说说是怎么发现这些株数不用重种的?

  生:通过测量的方法发现的。还发现了6、12不仅是2的倍数同时也是3的倍数,所以觉得是2和3的公倍数就都不用动。

  师:你们怎么想到“公倍数”这么个好听的.名字的?

  生:我们前面学习的几个公有的因数叫公因数,最大的叫最大公因数。那现在两个公有倍数就叫公倍数,30是最大的就叫最大公倍数。

  师:大家还有不同的意见吗?

  生:(议论纷纷)这个不是最大的,还有更大的。。。。

  师:确实如此,大家真能干!这节课我们就一起来探究这个问题。(出示课题:公倍数最小公倍数)

  师:谁能用自己的话说一说什么叫公倍数

  (几个数共有的倍数,叫做这几个数的公倍数)

  这一个是最小的,我们又称它为什么

  补充课题:最小公倍数谁能再来说一说什么叫最小公倍数

  (其中最小的一个,叫做这几个数的最小公倍数)

  今天我们就来研究公倍数与最小公倍数.

  二、探究:

  看了这个课题,你想在这节课中了解些什么请学生写在纸上,并贴到黑板上.

  (为什么不求最大公倍数求最小公倍数有哪些方法 哪些情况下可以很快说出两个数的最小公倍数是几 等)

  四人一组合作解决1~2个问题,举例说明,组长笔录.可以翻书请教,在P.69~71.

  成果汇报:

  (1)公倍数有多少个 (公倍数的个数是无限的,没有最大公倍数.)

  (2)求最小公倍数的几种方法:

  ①枚举法:

  根据学生举例填写集合圈并说出各部分所表示的内容:

  ②分解质因数:如:12与30的最小公倍数

  12= 2 × 2 × 3

  30= 2 × 3 × 5

  60= 2 × 3 × 2 × 5

  12独有的质因数 30独有的质因数

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积.

  [12,30]=2×3×2×5=60

  从这两个分解质因数的式子里你能看出12于30的最大公约数是几

  最大公约数与最小公倍数之间有什么关系

  (12= 6 × 2

  30= 6 × 5

  6 × 2 × 5 = 60)

  最大公因数 各自独有的质因数

  最小公倍数是两个数的最大公因数与各自独有质因数的乘积.

  ③短除法:如:36和45的最小公倍数

  3 36 45 用公因数去除

  3 12 15

  4 5 除到商是互质数为止

  [36,45]=3×3×4×5=180

  讨论:与求最大公因数比较有什么异同之处

  (相同处:都用公因数去除, 除到商是互质数为止.

  不同处:求最大公因数只要把公有的质因数相乘,求最小公倍数还要乘以各自独有的质因数.)

  短除法与分解质因数有什么联系

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20 65和130 4和15 18和24

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;

  当两个数有倍数关系时,最小公倍数是较大的数.

  4、总结:今天你们根据自己所提出的问题进行了研究学习,对于今天所学的内容还有什么疑问

《最小公倍数》教案9

  教学内容:人教版义务教育教科书数学五年级下册第68—69页。

  教学目标:

  1. 学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。

  2. 通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

  3. 在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。 教学重点:理解公倍数和最小公倍数的含义。

  教学难点:用不同的方法求两个数的公倍数和最小公倍数。

  教学过程:

  一、游戏导入

  同学们都知道自己的学号吧,我叫到学号的同学请起立,看看谁的反应快。(课件出示:学号是4的倍数的同学请起立;是6的倍数的同学请起立)哪些同学站起来2次?请站起来两次的同学再次起立,依次报出你们的学号。

  师:想一想,他们为什么站起来两次?

  生:因为他们既是4的倍数也是6的`倍数。

  师:你能给它起个名字吗?(板书公倍数)这节课我们就来研究关于公倍数的问题。 设计意图:说明通过报数游戏,让学生在研究现实问题的情境中学习数学,激发学生的学习积极性。

  二、自主探索

  (一)公倍数和最小公倍数的概念

  1. 回忆学习方法

  师:请同学们回忆,我们是怎样研究公因数的?

  生:先分别写出两个数的因数;从这些因数中找出相同的因数就是公因数;其中最大的一个因数就是这两个数的最大公因数。

  师:我们就用这样的方法来研究游戏中4和6的公倍数问题。

  2. 自主探究

  学生在练习本上独立找出4和6的公倍数。

  3. 汇报交流

  学生交流自己的学习成果,同学间互相讨论。(两个数有没有最大的公倍数?为什么?)

  4. 小结概念,课件演示集合图。

  12,24,36,……是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。

  设计意图:因为学生前面已经学习了公因数,这里让学生通过迁移的方法,很快地认识到这方面的知识,从而使学生获得成功的体验。

  (二)求两个数的公倍数和最小公倍数的方法。

  师:请用你想到的方法找出6和8的公倍数和最小公倍数。

  (1)学生独立完成,全班交流。

  (2)学生交流方法有:

  ①列举法:先找倍数,再找公倍数,最后找出最小公倍数。

  例如:6 的倍数:6,12,18,24,30,36,42,48,……

  8 的倍数:8,16,24,32,40,48,……

  6 和 8 公倍数:24,48,……6 和 8 的最小公倍数:24

  ②用集合图表示也很清楚。

  ③6 的倍数中有哪些是 8 的倍数呢? 或者8 的倍数中有哪些是 6 的倍数呢?

  师:这么多方法,你喜欢哪一种?

  通过观察,想一想:①两个数的公倍数和它们的最小公倍数之间有什么关系?

  练习:18和24 15和25

  三、课堂练习:

  找出下面每组数的最小公倍数,看看有什么发现?

  3 和 6 2 和 8 5和 6 4 和 9 3和9 5和10

  交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。

  你能举个例子吗?

  四、独立作业:数学书71页2题

  五、课堂小结:

  师:今天学习了什么知识?你有什么收获?

  生:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。

  找两个数公倍数和最小公倍数的方法等等。

  板书设计:

《最小公倍数》教案10

  教学目标:

  理解公倍数,最小公倍数的意义。

  会用列举法,分解质因数,短除法求两个数的最小公倍数。

  会求是互质数或有倍数关系的两个数的最小公倍数。

  在知识的探究过程中,培养大胆质疑的习惯。

  教学过程:

  一,导入:

  同学们,从我们学校到中山公园可乘坐A,B两种车,A车大约每隔400米设有一个车站,B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员,售票员送上毛巾擦擦汗,送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。

  慰问点设在距学校1200米,2400米处。

  2,在这里,我们找A,B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢

  出示课题:公倍数谁能用自己的话说一说什么叫公倍数

  (几个数共有的倍数,叫做这几个数的公倍数)

  这一个是最小的,我们又称它为什么

  补充课题:最小公倍数谁能再来说一说什么叫最小公倍数

  (其中最小的一个,叫做这几个数的最小公倍数)

  今天我们就来研究公倍数与最小公倍数。

  二,探究:

  看了这个课题,你想在这节课中了解些什么,请学生写在纸上,并贴到黑板上。

  (为什么不求最大公倍数,求最小公倍数有哪些方法,哪些情况下可以很快说出两个数的最小公倍数是几等)

  四人一组合作解决1~2个问题,举例说明,组长笔录。可以翻书请教,在P.69~71。

  成果汇报:

  (1)公倍数有多少个(公倍数的个数是无限的,没有最大公倍数。)

  (2)求最小公倍数的几种方法:

  ①枚举法:

  根据学生举例填写集合圈并说出各部分所表示的`内容:

  的倍数的倍数

  和的公有倍数

  ②分解质因数:如:12与30的最小公倍数

  12= 2 × 2 × 3

  30= 2 × 3 × 5

  60= 2 × 3 × 2 × 5

  12独有的质因数30独有的质因数

  最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。

  [12,30]=2×3×2×5=60

  从这两个分解质因数的式子里你能看出12于30的最大公约数是几

  最大公约数与最小公倍数之间有什么关系

  (12= 6 × 2

  30= 6 × 5

  6 × 2 × 5 = 60)

  最大公约数:各自独有的质因数

  最小公倍数是两个数的最大公约数与各自独有质因数的乘积。

  ③短除法:如:36和45的最小公倍数

  3 36 45用公约数去除

  3 12 15

  4 5除到商是互质数为止

  [36,45]=3×3×4×5=180

  讨论:与求最大公约数比较有什么异同之处

  (相同处:都用公约数去除,除到商是互质数为止。

  不同处:求最大公约数只要把公有的质因数相乘,求最小公倍数还要乘以各自独有的质因数。)

  短除法与分解质因数有什么联系

  任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):

  16和20 65和130 4和15 18和24

  得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;

  当两个数有倍数关系时,最小公倍数是较大的数。

  4,总结:今天你们根据自己所提出的问题进行了研究学习,对于今天所学的内容还有什么疑问

  三,回家作业布置:(感兴趣的同学做)

  世纪大道是浦东新区最为壮观的轴线大道,它横贯陆家嘴益融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你做一个设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每隔()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。

《最小公倍数》教案11

  教学要求

  ①使学生理解公倍数、最小公倍数的概念。

  ②使学生初步掌握求两个数的最小公倍数的方法。

  ③培养学生抽象概括的能力和实际操作的能力。

  教学重点理解公倍数、最小公倍数的概念。

  教学难点求两个数的最小公倍数的方法。

  教学用具投影仪

  教学过程

  一、创设情境

  1、口答:求下面每组数的最大公约数。

  3和86和1113和2617和51

  2、求30和42的.最大公约数。

  二、揭示课题。

  前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。

  三、探索研究

  1.教学例1。

  投影出示例1及画好的数轴。

  (1)学生口述4和6的倍数,投影显示在数轴上。

  (2)观察并回答。

  ①4和6公有的倍数是哪几个?

  ②其中最小的一个是多少?有无最大的?为什么?

  (3)归纳并板书。

  ①4和6公有的倍数有:12、24、36......

  其中最小的一个是12。

  ②也可以用图来表示。

  4的倍数6的倍数

  48162012246830

  ..................

  4和6的公倍数

  (4)抽象、概括。

  ①什么是公倍数、最小公倍数?(让学生说)

  ②指导学生看教材第71页有关公倍数、最小公倍数的概念。

  (5)尝试练习。

  做教材第73页的“做一做”,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。

  2.教学例2。

  (1)出示例2并说明:我们通常用分解质因数的方法来求几个数的最小公倍数。

  (2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?

  218230

  39315

  35

  18=2×3×3

  30=2×3×5

  (3)观察、分析。

  ①18(或30)的倍数必须包含哪些质因数?

  ②如果2×3×3(或2×3×5)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?

  ③18和30的公倍数必须包含哪些质因数?(2×3×3×5)

  (4)归纳:18和30的最小公倍数里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18和30的最小公倍数是:

  2×3×3×5=90

  (5)教学求最小公倍数的一般方法。

  为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求最小公倍数,如:1830并让学生分组讨论写成这种形式后该怎样做。

  ①每次用什么作除数去除?

  ②一直除到什么时候为止?

  ③再怎样做就可以求出最小公倍数了?

  (6)尝试练习。

  做教材第74页上面的“做一做”,学生解答后,点几名学生说说是怎样做的,然后集体订正。

  (7)抽象、概括求最小公倍数的方法。

  ①谁能说说求最小公倍数的方法。

  ②指导学生看第74页求两个数的最小公倍数的方法。

  四、课堂实践

  1.做练习十五的第1题,让学生讲讲为什么?

  2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?

  五、课堂小结

  学生小结今天学习的内容及方法。

  六、课堂作业

  做练习十五的第2、3题。

《最小公倍数》教案12

  设计说明

  1.充分利用教材中的素材创设情境,让学生在情境中解决问题。

  结合具体的生活情境学习,有助于学生获取知识。“铺墙砖”这一生活情境,学生有一定的生活经验,也具有一定的挑战性,能有效地激发学生的学习兴趣,让学生在实践操作中加强思考与探索,经历知识的形成过程。

  2.放手让学生自主探究,获取新知。

  著名数学家波利亚认为:“学习任何知识的最佳途径是由自己去发现,因为这种发现,理解最深刻,也最容易掌握其中的内在规律、性质和联系。”为了使学生积极主动地参与学习过程,必须引导学生自己去观察,去思考,去探索。本设计直接出示例题,引导学生利用已有的知识经验,经过自主探究和充分的讨论,获取解决问题的方法,在解决问题的过程中,积累经验,提高解决问题的能力。

  课前准备

  教师准备 PPT课件

  学生准备 若干张长3 dm、宽2 dm的卡片

  教学过程

  ⊙创设情境,引入新课

  1.引导学生回忆。

  师:同学们还记得前面我们学习的给贮藏室铺地砖的例题吗?这节课我们来学习“铺墙砖”的知识。

  2.课件出示例3:用一种长3 dm,宽2 dm的墙砖铺一个正方形(用的墙砖必须都是整块),正方形的边长可以是多少分米?最小是多少分米?

  设计意图:在以前学习过的“铺地砖”的基础上创设类似的情境,让学生在实践操作中加强思考与探索,经历知识的形成过程,完成数学建模。

  ⊙小组合作,解决问题

  1.拼一拼。

  (1)用长3 dm、宽2 dm的卡片代替墙砖拼正方形。

  (2)在印有格子的纸上画出拼成的正方形。边操作边思考:正方形的边长可以是多少分米?最小是多少分米?正方形的边长与墙砖的长和宽有什么关系?

  2.说发现。

  师:你拼出来了吗?想一想,正方形的边长必须满足什么条件?(正方形的边长必须是2和3的公倍数)

  3.解决问题。

  师:正方形的边长可以是多少分米?最小是多少分米?(正方形的边长可以是6 dm,12 dm,18 dm,…最小是6 dm)

  4.回顾解决“铺墙砖”问题的关键。

  把“铺墙砖”问题转化成求公倍数和最小公倍数的问题,也就是铺成的正方形的'边长必须是墙砖长和宽的公倍数,铺成的正方形的边长最小是墙砖长和宽的最小公倍数,这样才能保证用的墙砖都是整块。

  ⊙学习公倍数的应用

  1.解决教材72页11题。

  爸爸、妈妈和我一起跑步,爸爸跑一圈用3分钟,妈妈跑一圈用4分钟,我跑一圈用6分钟。如果爸爸、妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此题爸爸、妈妈分别跑了多少圈?[学生分组讨论,教师巡视指导,各组汇报:求至少多少分钟后两人在起点再次相遇,就是求3和4的最小公倍数,3和4的最小公倍数是12,也就是至少12分钟后两人在起点再次相遇,此时爸爸跑了12÷3=4(圈),妈妈跑了12÷4=3(圈)]

  2.引导学生在组内提出其他数学问题并合作解答,明确求三个数的最小公倍数的方法。

  预设

  生1:我和爸爸同时起跑,至少多少分钟后我们在起点再次相遇?

  (3和6的最小公倍数是6,也就是至少6分钟后我们在起点再次相遇)

  生2:我和妈妈同时起跑,至少多少分钟后我们在起点再次相遇?

  (4和6的最小公倍数是12,也就是至少12分钟后我们在起点再次相遇)

  生3:三人同时起跑,至少多少分钟后三人在起点再次相遇?

《最小公倍数》教案13

  教学目标:

  1、理解两个数的公倍数和最小公倍数的意义。

  2、探究找公倍数的方法,会利用列举法找出两个数的公倍数和最小公倍数。

  3、培养学生自主探究的精神和观察、分析、概括的能力;让学生体会数学与生活的紧密联系,树立学好数学的信心。

  教学重点:理解两个数的公倍数和最小公倍数的意义。

  教学难点:探究找公倍数和最小公倍数的方法。

  教具准备:多媒体课件

  教学过程

  一、创设情境

  教师谈话:,乐乐就放假了,很想爸爸妈妈带她出去玩。可乐乐的妈妈从七月一日起每工作3天休息一天,爸爸从七月一日起每工作5天休息一天,他们打算等爸爸妈妈同时休息时,全家一块儿去西湖公园玩。(出示:七月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?

  请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找乐乐妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出乐乐爸爸和妈妈共同的休息日了。

  根据学生的回答,教师逐步完成以下板书:

  妈妈的休息日:4、8、12、16、20、24、28

  爸爸的休息日:6、12、18、24、30

  他们共同的休息日:12、24

  其中最早的一天:12

  二、尝试探讨

  1、几个数的公倍数和最小公倍数的概念教学

  我们一起来看妈妈的休息日,把这些数读一读(学生读数),你发现这些数有些什么特点?

  师:对了,这些数都是4的倍数。(教师顺势把板书中“妈妈的休息日”改成了“4的倍数”。)

  师:刚才我们是在30以内的数中,依次找出了这些4的倍数,如果继续找下去,4的倍数还有吗?有多少个?(学生举例,教师在4的倍数后面添上了省略号。)

  我们再来看“爸爸的休息日”有什么特点?6的倍数有多少个?(把“爸爸的休息日”改成“6的倍数”并添上省略号)

  师:下面我们再来看“他们共同的休息日”,这些数和4、6有什么关系?

  师:对了,这些数既是4的倍数,又是6的倍数,你能给它一个新的名字吗?(把板书中“他们共同的休息日”改为“4和6的公倍数”。)

  师:刚才我们从30以内的数中找出了4和6的公倍数有12、24,如果继续找下去,你还能找出一些来吗?可以找多少?(学生举例,老师根据学生回答,在后面添上省略号。)

  师:这“其中最早的一天”,我们一起给它起个名字,叫什么?

  (根据学生回答,把板书中“其中最早的一天”改为“4和6的最小公倍数”。)

  板书:

  4的倍数:4、8、12、16、20、24、28、……

  6的倍数:6、12、18、24、30、……

  4和6的公倍数:12、24、……

  4和6的最小公倍数:12

  教师谈话:4的倍数、6的倍数、4和6的公倍数、最小公倍数,我们还可以用这样的图来表示:

  出示集合图:

  4的倍数6的倍数4的倍数6的倍数

  4和6的公倍数

  三、深化概念

  师:通过找“共同的休息日”,我们分别求出了这组数的公倍数和最小公倍数。

  请同学们把书翻到51页看例子,填一填

  师:什么是公倍数?

  生:两个数公有的倍数就是他们的公倍数。

  师:公倍数有多少个?

  生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

  师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

  生①:举例:2、4和5的公倍数是20。

  生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

  师:那你能找出最大的或最小的公倍数吗?

  生:没有最大的,只有最小的。

  师:为什么?

  生:因为公倍数的个数是无限的,所以没有最大公倍数。谁能用自己的话说一说什么叫公倍数?什么叫最小公倍数?

  板书:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

  这就是我们今天要学习的内容。(揭示课题:最小公倍数)

  师:那么我们刚才是怎么找出最小公倍数的.呢?

  生说,师写(列举法)

  [点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。]

  4.[出示]找最小公倍数

  2和69和186和245和353和9

  3和57和54和99和11

  让学生找出每组数的公倍数。

  师:有的同学找得很快,能给大家说一说你的方法吗?你发现了什么?

  小组讨论,之后汇报。

  生:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。

  生:2和6的最小公倍数是12,并不是它们的乘积。

  生:大数要是小数的倍数,大数就是它们的公倍数,而且是最小公倍数。例如2和6,9和18,最大的数都是它们的最小公倍数。

  师:你们还能发现了什么?

  生③:第二排每一组都是互质数。例如3和5两个数是互质数。互质数的最小公倍数是它们的乘积。

  师总结

  师;你们能举一些这类的例子吗?

  5、请同学们用刚才的发现做书本52页的第3题,求下面各组数的最小公倍数

  3和610和83和95和46和59和42和76和8

  [点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。]

  四、利用最小公倍数解决生活问题,

  出示:

  (1)“五(1)班同学参加植树劳动,按6人一组或8人一组都正好分完。五(2)班参加植树的至少有多少人?”

  齐读两次,找出题中的关键字,引导中理解题意后放手让生自己完成,同桌间比对。

  (2)人民公园是1路和6路汽车的起点站。1路汽车每3分钟发车一次,6路汽车每5分钟发车一次。这两路汽车同时发车以后,至少再过多久又同时发车?

  (设计理念:借助于生活实例进行对知识的应用,这样不仅可以让生对抽象概念得以理性认识,而且也能切身的体会到数学知识是为生活服务的,在分析中我紧抓关键字突破难点,这样可以让生学会解决问题的技巧。)

  五、小结

  今天学习了什么内容?什么叫最小公倍数?

  我们今天学习了求最小公倍数的哪几种情况?

  怎样才能很快地求出它们的最小公倍数?

  板书:找最小公倍数

  一般关系列举法

  倍数关系较大数

  特殊关系

  互质关系两数的乘积

《最小公倍数》教案14

  教学目标

  1.使学生理解公倍数和最小公倍数的含义,能用排列法找出两个数的公倍数和最小公倍数。

  重点难点

  1.掌握公倍数和最小公倍数的概念。

  主要教学方法

  新授课讲解法尝试法

  操作过程

  板书设计:公倍数、最小公倍数的认识

  例1.从小到大,顺次写出几个6的倍数和几个9的倍数,找出6和9公有的倍数,最小的一个公倍数是几?

  6的倍数有:6、12、18、24、36、42......

  9的倍数有:9、18、27、36、45、54......

  6和9公有的倍数有:18、36......其中最小的一个是18

  用图表示如下:

  6的倍数9的倍数

  6和9的公倍数

  几个数公有的倍数,叫做这几个数的公倍数;其中最小的`一个,叫做这几个数的最小公倍数。

  教师活动:预计时间()分钟

  学生活动;预计时间()分钟

  一. 准备题

  1.什么叫约数?什么叫倍数?

  2.用什么方法求一个数的倍数?

  3.一个数最小的倍数是什么?有没有最大的倍数?

  二.教学新课

  1.出示例1。

  2.学生尝试

  6的倍数有:6、16、18、24、30、36、42、......

  9的倍数有:9、18、27、36、45、......

  6和9公有的倍数有:18、36......

  3.教师讲评:也可以用图来表示:

  6的倍数9的倍数

  6和9的公倍数

  4.引导学生归纳出公倍数和最小公倍数的含义。

  三.练一练:

  1.第1题填在书上。

  2.第2、3两题

  3.独立练习:第4、5题

  四.课堂总结:这节课学习了什么?你有什么收获?

  学生口答

  1.学生读题

  2.尝试:指名板演,其余自练。

  3.先理解图意,再填入公倍数。

  1.指名说说

  2.把书上的发现告诉同学。

  3.看书上写的是不是与我们发现的相同?

  4.想一想:

  (1)有没有最大的公倍数?为什么?

  (2)倍数、公倍数和最小公倍数有什么区别?

  1.学生填在书上。

  2.找出相同点和不同点。

  相同点:找倍数和公倍数的方法相同。

  不同点:第2题前3个括号里要有省略号;第3题前3个括号里不该填上省略号。

  四.总结后做目标检测。

  延伸练习

  作业册70页

  反馈与矫正

  目标达成情况

《最小公倍数》教案15

  第三课时

  教学内容:求三个数的最小公倍数

  教学目标:

  使学生学会求三个数的最小公倍数的方法,并能正确地,合理地求三个数的最小公倍数。

  教学过程:

  一、复习

  什么是公倍数、最小公倍数

  怎样求两个数的最小公倍数

  求两个数的最小公倍数与最大公约数有什么联系

  当两个数是倍数关系时,大数就是这两个数的最小公倍数,小数就是这两个数的最大公约数。

  当两个数是互质数时,这两个数的最大公约数是1,这两个数的最小公倍数是这两个数的乘积。

  二、揭示课题

  这节课我们学习求三个数的最小公倍数。

  三、教学新课

  1、例3求12、16和18的最小公倍数。

  2、学生自学完成。

  3、对不懂的问题提出疑问。

  4、注意:用短除法求三个数的最小公倍数时,先要用三个数的公约数去除,然后再用任意两个数的公约数去除。最后的结果要两两互质。

  5、试一试

  求15、30和60,3.4和7的最小公倍数。

  计算后,你发现了什么?

  (1)其中一个数是其他两个数的倍数,那么最大的数就是这三个数的.最小公倍数。

  (2)当三个数是互质数时,三个数的乘积是这三个数的最小公倍数。

  四、巩固练习

  书本第57-58页

  五、反馈

  六、布置作业

  反思:本节课的难点是让学生知道为什么在求出三个数的公约数后还要求出两个数的公约数。然后把所有的除数和商乘起来。

【《最小公倍数》教案】相关文章:

《最小公倍数》教案7篇09-24

《最小公倍数》教学设计08-14

最小公倍数教学设计10-22

《最小公倍数》教学设计15篇07-22

最小公倍数说课稿(精选3篇)03-15

《最小公倍数》教学设计11篇09-14

五年级公倍数和最小公倍数说课稿02-18

教案06-23

大班健康教案快乐娃娃教案11-27

麋鹿的教案08-28